Back to all Blog Posts

Animated Plots using ggplot and gganimate

  • Coding
  • Data Visualization
  • R
14. Febuary 2020
·

Team statworx

Did you know, that you can transform plain old static ggplot graphs to animated ones? Well, you can with the help of the package gganimate by RStudio's Thomas Lin Pedersen and David Robinson and the results are amazing! My statworx colleagues and I are very impressed how effortless all kinds of geoms are transformed to suuuper smooth animations. That’s why in this post I will provide a short overview of some of the wonderful functionalities of gganimate, I hope you’ll enjoy them as much as we do!

Since Valentine's Day is just around the corner, we're going to explore the Speed Dating Experiment dataset compiled by Columbia Business School professors Ray Fisman and Sheena Iyengar. Hopefully, we'll learn about gganimate as well as how to find our Valentine. If you like, you can download the data from Kaggle.

Defining the basic animation: transition_*

How are static plots put into motion? Essentially, gganimate creates data subsets, which are plotted individually and constitute the substantial frames, which, when played consecutively, create the basic animation. The results of gganimate are so seamless because gganimate takes care of the so-called tweening for us by calculating data points for transition frames displayed in-between frames with actual input data.

The transition_* functions define how the data subsets are derived and thus define the general character of any animation. In this blogpost we’re going to explore three types of transitions: transition_states(), transition_reveal() and transition_filter(). But let's start at the beginning.

We’ll start with transition_states(). Here the data is split into subsets according to the categories of the variable provided to the states argument. If several rows of a dataset pertain to the same unit of observation and should be identifiable as such, a grouping variable defining the observation units needs to be supplied. Alternatively, an identifier can be mapped to any other aesthetic.

Please note, to ensure the readability of this post, all text concerning the interpretation of the speed dating data is written in italics. If you're not interested in that part you simply can skip those paragraphs. For the data prep, I'd like to refer you to my GitHub.

First, we're going to explore what the participants of the Speed Dating Experiment look for in a partner. Participants were asked to rate the importance of attributes in a potential date by allocating a budget of 100 points to several characteristics, with higher values denoting a higher importance. The participants were asked to rate the attributes according to their own views. Further, the participants were asked to rate the same attributes according to the presumed wishes of their same-sex peers, meaning they allocated the points in the way they supposed their average same-sex peer would do.

We're going to plot all of these ratings (x-axis) for all attributes (y-axis). Since we want to compare the individual wishes to the individually presumed wishes of peers, we're going to transition between both sets of ratings. Color always indicates the personal wishes of a participant. A given bubble indicates the rating of one specific participant for a given attribute, switching between one's own wishes and the wishes assumed for peers.

## Static Plot
# ...characteristic vs. (presumed) rating...
# ...color&size mapped to own rating, grouped by ID
plot1 <- ggplot(df_what_look_for, 
       aes(x = value,
           y = variable,
           color = own_rating, # bubbels are always colord according to own whishes
           size = own_rating,
           group = iid)) + # identifier of observations across states
  geom_jitter(alpha = 0.5, # to reduce overplotting: jitttering & alpha
              width = 5) + 
  scale_color_viridis(option = "plasma", # use virdis' plasma scale
                      begin = 0.2, # limit range of used hues
                      name = "Own Rating") +
  scale_size(guide = FALSE) + # no legend for size
  labs(y = "", # no axis label
       x = "Allocation of 100 Points",  # x-axis label
       title = "Importance of Characteristics for Potential Partner") +
  theme_minimal() +  # apply minimal theme
  theme(panel.grid = element_blank(),  # remove all lines of plot raster
        text = element_text(size = 16)) # increase font size

## Animated Plot
plot1 + 
  transition_states(states = rating) # animate contrast subsets acc. to variable rating 

First off, if you're a little confused which state is which, please be patient, we'll explore dynamic labels in the section about 'frame variables'.

It's apparent that different people look for different things in a partner. Yet attractiveness is often prioritized over other qualities. But the importance of attractiveness varies most strongly of all attributes between individuals. Interestingly, people are quite aware that their peer's ratings might differ from their own views. Further, especially the collective presumptions (= the mean values) about others are not completely off, but of higher variance than the actual ratings.

So there is hope for all of us that somewhere out there somebody is looking for someone just as ambitious or just as intelligent as ourselves. However, it's not always the inner values that count.

gganimate allows us to tailor the details of the animation according to our wishes. With the argument transition_length we can define the relative length of the transition from one to the other real subsets of data takes and with state_length how long, relatively speaking, each subset of original data is displayed. Only if the wrap argument is set to TRUE, the last frame will get morphed back into the first frame of the animation, creating an endless and seamless loop. Of course, the arguments of different transition functions may vary.

## Animated Plot
# ...replace default arguments
plot1 + 
  transition_states(states = rating,
                    transition_length = 3, # 3/4 of total time for transitions
                    state_length = 1, # 1/4 of time to display actual data
                    wrap = FALSE) # no endless loop

Styling transitions: ease_aes

As mentioned before, gganimate takes care of tweening and calculates additional data points to create smooth transitions between successively displayed points of actual input data. With ease_aes we can control which so-called easing function is used to 'morph' original data points into each other. The default argument is used to declare the easing function for all aesthetics in a plot. Alternatively, easing functions can be assigned to individual aesthetics by name. Amongst others quadric, cubic , sine and exponential easing functions are available, with the linear easing function being the default. These functions can be customized further by adding a modifier-suffix: with -in the function is applied as-is, with -out the function is reversely applied with -in-out the function is applied as-is in the first half of the transition and reversed in the second half.

Here I played around with an easing function that models the bouncing of a ball.

## Animated Plot
# ...add special easing function
plot1 + 
  transition_states(states = rating) + 
  ease_aes("bounce-in") # bouncy easing function, as-is

Dynamic labelling: {frame variables}

To ensure that we, mesmerized by our animations, do not lose the overview gganimate provides so-called frame variables that provide metadata about the animation as a whole or the previous/current/next frame. The frame variables - when wrapped in curly brackets - are available for string literal interpretation within all plot labels. For example, we can label each frame with the value of the states variable that defines the currently (or soon to be) displayed subset of actual data:

## Animated Plot
# ...add dynamic label: subtitle with current/next value of states variable
plot1 +
  labs(subtitle = "{closest_state}") + # add frame variable as subtitle
  transition_states(states = rating) 

The set of available variables depends on the transition function. To get a list of frame variables available for any animation (per default the last one) the frame_vars() function can be called, to get both the names and values of the available variables.

Indicating previous data: shadow_*

To accentuate the interconnection of different frames, we can apply one of gganimates 'shadows'. Per default shadow_null() i.e. no shadow is added to animations. In general, shadows display data points of past frames in different ways: shadow_trail() creates a trail of evenly spaced data points, while shadow_mark() displays all raw data points.

We'll use shadow_wake() to create a little 'wake' of past data points which are gradually shrinking and fading away. The argument wake_length allows us to set the length of the wake, relative to the total number of frames. Since the wakes overlap, the transparency of geoms might need adjustment. Obviously, for plots with lots of data points shadows can impede the intelligibility.

plot1B + # same as plot1, but with alpha = 0.1 in geom_jitter
  labs(subtitle = "{closest_state}") +  
  transition_states(states = rating) +
  shadow_wake(wake_length = 0.5) # adding shadow

The benefits of transition_*

While I simply love the visuals of animated plots, I think they’re also offering actual improvement. I feel transition_states compared to facetting has the advantage of making it easier to track individual observations through transitions. Further, no matter how many subplots we want to explore, we do not need lots of space and clutter our document with thousands of plots nor do we have to put up with tiny plots.

Similarly, e.g. transition_reveal holds additional value for time series by not only mapping a time variable on one of the axes but also to actual time: the transition length between the individual frames displays of actual input data corresponds to the actual relative time differences of the mapped events. To illustrate this, let's take a quick look at the 'success' of all the speed dates across the different speed dating events:

## Static Plot
# ... date of event vs. interest in second date for women, men or couples
plot2 <- ggplot(data = df_match,
                aes(x = date, # date of speed dating event
                    y = count, # interest in 2nd date
                    color = info, # which group: women/men/reciprocal
                    group = info)) +
  geom_point(aes(group = seq_along(date)), # needed, otherwise transition dosen't work
             size = 4, # size of points
             alpha = 0.7) + # slightly transparent
  geom_line(aes(lty = info), # line type according to group
            alpha = 0.6) + # slightly transparent
  labs(y = "Interest After Speed Date",
       x = "Date of Event",
       title = "Overall Interest in Second Date") +
  scale_linetype_manual(values = c("Men" = "solid", # assign line types to groups
                                   "Women" = "solid",
                                   "Reciprocal" = "dashed"),
                        guide = FALSE) + # no legend for linetypes
  scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + # y-axis in %
  scale_color_manual(values = c("Men" = "#2A00B6", # assign colors to groups
                                "Women" = "#9B0E84",
                                "Reciprocal" = "#E94657"),
                     name = "") +
  theme_minimal() + # apply minimal theme
  theme(panel.grid = element_blank(), # remove all lines of plot raster
        text = element_text(size = 16)) # increase font size

## Animated Plot
plot2 +
  transition_reveal(along = date) 

Displayed are the percentages of women and men who were interested in a second date after each of their speed dates as well as the percentage of couples in which both partners wanted to see each other again.

Most of the time, women were more interested in second dates than men. Further, the attraction between dating partners often didn't go both ways: the instances in which both partners of a couple wanted a second date always were far more infrequent than the general interest of either men and women. While it's hard to identify the most romantic time of the year, according to the data there seemed to be a slack in romance in early autumn. Maybe everybody still was heartbroken over their summer fling? Fortunately, Valentine's Day is in February.

Another very handy option is transition_filter(), it's a great way to present selected key insights of your data exploration. Here the animation browses through data subsets defined by a series of filter conditions. It's up to you which data subsets you want to stage. The data is filtered according to logical statements defined in transition_filter(). All rows for which a statement holds true are included in the respective subset. We can assign names to the logical expressions, which can be accessed as frame variables. If the keep argument is set to TRUE, the data of previous frames is permanently displayed in later frames.

I want to explore, whether one's own characteristics relate to the attributes one looks for in a partner. Do opposites attract? Or do birds of a feather (want to) flock together?

Displayed below are the importances the speed dating participants assigned to different attributes of a potential partner. Contrasted are subsets of participants, who were rated especially funny, attractive, sincere, intelligent or ambitious by their speed dating partners. The rating scale went from 1 = low to 10 = high, thus I assume value of >7 to be rather outstanding.

## Static Plot (without geom)
# ...importance ratings for different attributes
plot3 <- ggplot(data = df_ratings, 
                 aes(x = variable, # different attributes
                     y = own_rating, # importance regarding potential partner
                     size = own_rating, 
                     color = variable, # different attributes
                     fill = variable)) +
  geom_jitter(alpha = 0.3) +
  labs(x = "Attributes of Potential Partner", # x-axis label
       y = "Allocation of 100 Points (Importance)",  # y-axis label
       title = "Importance of Characteristics of Potential Partner", # title
       subtitle = "Subset of {closest_filter} Participants") + # dynamic subtitle 
  scale_color_viridis_d(option = "plasma", # use viridis scale for color 
                        begin = 0.05, # limit range of used hues
                        end = 0.97,
                        guide = FALSE) + # don't show legend
  scale_fill_viridis_d(option = "plasma", # use viridis scale for filling
                       begin = 0.05, # limit range of used hues
                       end = 0.97, 
                       guide = FALSE) + # don't show legend
  scale_size_continuous(guide = FALSE) + # don't show legend
  theme_minimal() + # apply minimal theme
  theme(panel.grid = element_blank(),  # remove all lines of plot raster
        text = element_text(size = 16)) # increase font size

## Animated Plot 
# ...show ratings for different subsets of participants
plot3 +
  geom_jitter(alpha = 0.3) +
  transition_filter("More Attractive" = Attractive > 7, # adding named filter expressions
                    "Less Attractive" = Attractive <= 7,
                    "More Intelligent" = Intelligent > 7,
                    "Less Intelligent" = Intelligent <= 7,
                    "More Fun" = Fun > 7,
                    "Less Fun" = Fun <= 5) 

Of course, the number of extraordinarily attractive, intelligent or funny participants is relatively low. Surprisingly, there seem to be little differences between what the average low vs. high scoring participants look for in a partner. Rather the lower scoring group includes more people with outlying expectations regarding certain characteristics. Individual tastes seem to vary more or less independently from individual characteristics.

Styling the (dis)appearance of data: enter_* / exit_*

Especially if displayed subsets of data do not or only partially overlap, it can be favorable to underscore this visually. A good way to do this are the enter_*() and exit_*() functions, which enable us to style the entry and exit of data points, which do not persist between frames.

There are many combinable options: data points can simply (dis)appear (the default), fade (enter_fade()/exit_fade()), grow or shrink (enter_grow()/exit_shrink()), gradually change their color (enter_recolor()/exit_recolor()), fly (enter_fly()/exit_fly()) or drift (enter_drift()/exit_drift()) in and out.

We can use these stylistic devices to emphasize changes in the databases of different frames. I used exit_fade() to let further not included data points gradually fade away while flying them out of the plot area on a vertical route (y_loc = 100), data points re-entering the sample fly in vertically from the bottom of the plot (y_loc = 0):

## Animated Plot 
# ...show ratings for different subsets of participants
plot3 +
  geom_jitter(alpha = 0.3) +
  transition_filter("More Attractive" = Attractive > 7, # adding named filter expressions
                    "Less Attractive" = Attractive <= 7,
                    "More Intelligent" = Intelligent > 7,
                    "Less Intelligent" = Intelligent <= 7,
                    "More Fun" = Fun > 7,
                    "Less Fun" = Fun <= 5) +
  enter_fly(y_loc = 0) + # entering data: fly in vertically from bottom
  exit_fly(y_loc = 100) + # exiting data: fly out vertically to top...
  exit_fade() # ...while color is fading

Finetuning and saving: animate() & anim_save()

Gladly, gganimate makes it very easy to finalize and save our animations. We can pass our finished gganimate object to animate() to, amongst other things, define the number of frames to be rendered (nframes) and/or the rate of frames per second (fps) and/or the number of seconds the animation should last (duration). We also have the option to define the device in which the individual frames are rendered (the default is device = “png”, but all popular devices are available). Further, we can define arguments that are passed on to the device, like e.g. width or height. Note, that simply printing an gganimateobject is equivalent to passing it to animate() with default arguments. If we plan to save our animation the argument renderer, is of importance: the function anim_save() lets us effortlessly save any gganimate object, but only so if it was rendered using one of the functions magick_renderer() or the default gifski_renderer().

The function anim_save()works quite straightforward. We can define filename and path (defaults to the current working directory) as well as the animation object (defaults to the most recently created animation).

# create a gganimate object
gg_animation <- plot3 +
  transition_filter("More Attractive" = Attractive > 7,
                    "Less Attractive" = Attractive <= 7) 

# adjust the animation settings 
animate(gg_animation, 
        width = 900, # 900px wide
        height = 600, # 600px high
        nframes = 200, # 200 frames
        fps = 10) # 10 frames per second

# save the last created animation to the current directory 
anim_save("my_animated_plot.gif")

Conclusion (and a Happy Valentine's Day)

I hope this blog post gave you an idea, how to use gganimate to upgrade your own ggplots to beautiful and informative animations. I only scratched the surface of gganimates functionalities, so please do not mistake this post as an exhaustive description of the presented functions or the package. There is much out there for you to explore, so don’t wait any longer and get started with gganimate!

But even more important: don’t wait on love. The speed dating data shows that most likely there’s someone out there looking for someone just like you. So from everyone here at STATWORX: Happy Valentine’s Day!

## 8 bit heart animation
animation2 <- plot(data = df_eight_bit_heart %>% # includes color and x/y position of pixels 
         dplyr::mutate(id = row_number()), # create row number as ID  
                aes(x = x, 
                    y = y,
                    color = color,
                    group = id)) +
  geom_point(size = 18, # depends on height & width of animation
             shape = 15) + # square
  scale_color_manual(values = c("black" = "black", # map values of color to actual colors
                                "red" = "firebrick2",
                                "dark red" = "firebrick",
                                "white" = "white"),
                     guide = FALSE) + # do not include legend
  theme_void() + # remove everything but geom from plot
  transition_states(-y, # reveal from high to low y values 
                    state_length = 0) +
  shadow_mark() + # keep all past data points
  enter_grow() + # new data grows 
  enter_fade() # new data starts without color

animate(animation2, 
        width = 250, # depends on size defined in geom_point 
        height = 250, # depends on size defined in geom_point 
        end_pause = 15) # pause at end of animation

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Coding
  • Python
  • Statistics & Methods
Ensemble Methods in Machine Learning: Bagging & Subagging
Team statworx
15.4.2025
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
15.4.2025
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
15.4.2025
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
How to Speed Up Gradient Boosting by a Factor of Two
Team statworx
15.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
15.4.2025
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
15.4.2025
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
15.4.2025
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
14.4.2025
Read more
  • Machine Learning
  • Python
  • R
XGBoost Tree vs. Linear
Fabian Müller
14.4.2025
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
14.4.2025
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
14.4.2025
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
14.4.2025
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
11.4.2025
Read more
  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
25.2.2025
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
15.1.2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15.1.2025
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
6.12.2024
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
6.12.2024
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
6.12.2024
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
Automated Creation of Docker Containers
Stephan Emmer
6.12.2024
Read more
  • Coding
  • Data Visualization
  • R
Customizing Time and Date Scales in ggplot2
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Machine Learning
  • Python
Data Science in Python - Getting started with Machine Learning with Scikit-Learn
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
6.12.2024
Read more
  • Recap
  • statworx
As a Data Science Intern at statworx
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
6.12.2024
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
6.12.2024
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
6.12.2024
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
6.12.2024
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 Practical Examples of NLP Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Deep Learning
Fine-tuning Tesseract OCR for German Invoices
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
New Trends in Natural Language Processing – How NLP Becomes Suitable for the Mass-Market
Dominique Lade
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
How to Provide Machine Learning Models With the Help Of Docker Containers
Thomas Alcock
6.12.2024
Read more
  • Frontend
  • Python
  • Tutorial
How To Build A Dashboard In Python – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
Whitepaper: A Maturity Model for Artificial Intelligence
Team statworx
6.12.2024
Read more
  • Data Engineering
  • R
  • Tutorial
How To Dockerize ShinyApps
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
STATWORX 2.0 – Opening of the New Headquarters in Frankfurt
Julius Heinz
6.12.2024
Read more
  • Coding
  • Python
Web Scraping 101 in Python with Requests & BeautifulSoup
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
Deep Learning Overview and Getting Started
Team statworx
6.12.2024
Read more
  • Data Science
  • R
  • Statistics & Methods
Evaluating Model Performance by Building Cross-Validation from Scratch
Team statworx
6.12.2024
Read more
  • Machine Learning
  • R
  • Statistics & Methods
What the Mape Is FALSELY Blamed For, Its TRUE Weaknesses and BETTER Alternatives!
Team statworx
6.12.2024
Read more
  • Data Visualization
  • R
Interactive Network Visualization with R
Team statworx
6.12.2024
Read more
  • Data Science
  • Tutorial
An Introduction to Dataiku DSS
Team statworx
6.12.2024
Read more
  • Coding
  • Data Visualization
  • Python
Fixing the Most Common Problem With Plotly Histograms
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
  • R
Running your R script in Docker
Team statworx
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Python
Data Science in Python – Matplotlib – Part 4
Team statworx
6.12.2024
Read more
This is some text inside of a div block.
This is some text inside of a div block.