Back to all Blog Posts

Creaition – revolutionizing the design process with machine learning

  • Artificial Intelligence
  • Deep Learning
  • statworx
31. März 2021
·

Team statworx

From the drawing bank to a machine learning research project

As one of the leading consultancies in the area of data science, AI & machine learning, we regularly meet people at STATWORX who make a lasting impression on us with their revolutionary ideas. Many of these people have one thing in common with their product ideas: They want to reduce a personal pain point in their way of working. One of these exciting people with an unusual idea is Marco Limm.

Marco Limm has The start-up Creaition founded, which wants to optimize the extremely complex and very iterative process of design development with its product. But how did he get this idea?

While studying transportation design in the USA, he first came up with the idea of using the design process with the help of Machine learning to optimize. He was motivated by the fact that many of his works were produced, to put it in his own words, “for the bin” and thus spurred him on to find a more efficient way.

The idea of developing his own product, which acts as a digital muse for designers, has been very busy for Marco since the third semester. With the motivation to make work easier for other designers as well, and spurred on by curiosity as to whether his idea could actually be implemented, he developed a research paper from the idea, which he dedicated himself to both his bachelor's and master's thesis.

The development of the creaition prototype

First attempts with 3D models, image data & scarce resources

Marco sees the most important influence of designers at the beginning and end of the classic design process — in his opinion, designers should be able to focus much more on this. The middle part of the design process includes, for example, “drawing car fronts for hours,” says Marco. “The machine can take over the morphology; you don't need a human designer for that. ”

Abbildung eines Designprozesses
Figure 2: Illustration of the classic structure of the design process and the interactive setup.

Based on the basic idea of optimization through machine learning, Marco started developing the algorithm together with Kevin German as part of their joint bachelor thesis at the university. The aim was to train artificial intelligence (AI) that independently creates design suggestions based on historical data.

First, the duo tried to work with 3D models that Marco had created himself. In this attempt, the two quickly reached their limits, as they did not have sufficient computing power and infrastructure available at university. Another problem was a lack of data.

In a second step, they tried their hand at images that they obtained from various sources (archives, online, etc.). That worked better already, but the results that the algorithm generated from this data were more art than industrial design. Marco tells us that one of his professors would have liked to publish these results as an art project. “The result was beautiful compositions that could certainly be placed in a museum, but unfortunately that wasn't the real goal. ”

Figure 3: In a “picture book,” Marco Limm shows the results of the various phases of the development of the machine learning algorithm.

3-layer approach for the machine learning algorithm

From these first two failed attempts, it was possible to draw the conclusion that they needed a less complex but also not too abstract data basis. It went back to the research phase, rummaging through books, examining various approaches, collecting new impressions. As a result, they launched a completely new approach in the third attempt. In this new approach, they divided the design into 3 layers: silhouette, surfaces, graphics. They used the three layers that make up a design to reduce the complexity of the data.

Picture 4: This drawing by Marco Limm is a selection of the numerous designs required in the classic design process.

With the 3-layer approach, Marco was able to create a suitable data set and use this data to train the algorithm. The result was 40,000 designs from which they could now choose.

This result gave rise to the next challenge: Evaluating 40,000 designs did not really make work easier. The solution? A genetic algorithm that recognizes individual tastes based on designers' reactions to various design suggestions and generates new suggestions based on this. They called it “bottle Tinder” — because here too, you keep swiping, depending on whether you like the design or not.

With the “bottle Tinder” principle, designers are constantly presented with new design suggestions, which they must then evaluate. After about 15 minutes, the algorithm is able to extract the person's taste and then apply it at will.

Figure 5: This rendering shows the first bottle design generated by the AI.

Creation on the go at national and international trade fairs

With this prototype in its luggage, the creaition project attracted attention at various trade fairs and received consistently positive feedback there. Your colleagues from the design industry see great potential in their product — who wants to draw car fronts for hours on end?

Creaition was represented at the following trade fairs, among others:

Next steps: pilot project

We at STATWORX are currently supporting creaition in finding a suitable partner for a pilot project. The aim of the proof of concept is to develop new design drafts based on extracted design DNA from the client.

In concrete terms, this means that the machine learning algorithm is retrained on the basis of your 2D data and filters out a design DNA, which in turn can be used to generate any number of new design suggestions. As a rule, companies that are eligible for this type of AI optimization already have a wealth of data (especially 2D data from their products) from which they have not yet benefited much. So use the potential of your data and help your design department reduce repetitive and monotonous work steps so they can focus on essential, creative and creative work.

Would you like to find out more about Creaition? You can download the full conference paper here, which Marco Limm and his co-authors (Kevin German, Matthias Wölfel and Silke Helmerdig) wrote for ArtSit on this topic.

If you are interested in working with us on this pilot project, please feel free to contact us via our contact form or send an email to hello@creaition.io.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Coding
  • Python
  • Statistics & Methods
Ensemble Methods in Machine Learning: Bagging & Subagging
Team statworx
15.4.2025
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
15.4.2025
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
15.4.2025
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
How to Speed Up Gradient Boosting by a Factor of Two
Team statworx
15.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
15.4.2025
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
15.4.2025
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
15.4.2025
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
14.4.2025
Read more
  • Machine Learning
  • Python
  • R
XGBoost Tree vs. Linear
Fabian Müller
14.4.2025
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
14.4.2025
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
14.4.2025
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
14.4.2025
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
11.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
8.4.2025
Read more
  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
25.2.2025
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
15.1.2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15.1.2025
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
6.12.2024
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
6.12.2024
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
6.12.2024
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
Automated Creation of Docker Containers
Stephan Emmer
6.12.2024
Read more
  • Coding
  • Data Visualization
  • R
Customizing Time and Date Scales in ggplot2
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Machine Learning
  • Python
Data Science in Python - Getting started with Machine Learning with Scikit-Learn
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
6.12.2024
Read more
  • Recap
  • statworx
As a Data Science Intern at statworx
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
6.12.2024
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
6.12.2024
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
6.12.2024
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
6.12.2024
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 Practical Examples of NLP Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Deep Learning
Fine-tuning Tesseract OCR for German Invoices
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
New Trends in Natural Language Processing – How NLP Becomes Suitable for the Mass-Market
Dominique Lade
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
How to Provide Machine Learning Models With the Help Of Docker Containers
Thomas Alcock
6.12.2024
Read more
  • Frontend
  • Python
  • Tutorial
How To Build A Dashboard In Python – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
Whitepaper: A Maturity Model for Artificial Intelligence
Team statworx
6.12.2024
Read more
  • Data Engineering
  • R
  • Tutorial
How To Dockerize ShinyApps
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
STATWORX 2.0 – Opening of the New Headquarters in Frankfurt
Julius Heinz
6.12.2024
Read more
  • Coding
  • Python
Web Scraping 101 in Python with Requests & BeautifulSoup
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
Deep Learning Overview and Getting Started
Team statworx
6.12.2024
Read more
  • Data Science
  • R
  • Statistics & Methods
Evaluating Model Performance by Building Cross-Validation from Scratch
Team statworx
6.12.2024
Read more
  • Machine Learning
  • R
  • Statistics & Methods
What the Mape Is FALSELY Blamed For, Its TRUE Weaknesses and BETTER Alternatives!
Team statworx
6.12.2024
Read more
  • Data Visualization
  • R
Interactive Network Visualization with R
Team statworx
6.12.2024
Read more
  • Data Science
  • Tutorial
An Introduction to Dataiku DSS
Team statworx
6.12.2024
Read more
  • Coding
  • Data Visualization
  • Python
Fixing the Most Common Problem With Plotly Histograms
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
  • R
Running your R script in Docker
Team statworx
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Python
Data Science in Python – Matplotlib – Part 4
Team statworx
6.12.2024
Read more
This is some text inside of a div block.
This is some text inside of a div block.