Back to all Blog Posts

Customizing Time and Date Scales in ggplot2

  • Coding
  • Data Visualization
  • R
11. June 2018
·

Team statworx

In the last post of this series, we dealt with axis systems. In this post, we are also dealing with axes but this time we are taking a look at the position scales of dates, time, and datetimes. Since we at statworx are often forecasting - and thus plotting - time series, this is an important issue for us. The choice of axis ticks and labels can make the message conveyed by a plot clearer. Oftentimes, some points in time are – e.g. due to their business implications – more important than others and should be easily identified. Unequivocal, yet parsimonious labeling is key to the readability of any plot. Luckily, ggplot2 enables us to do so for dates and times with almost any effort at all.

We are using ggplot's economics data set. Our base Plot looks like this:

base_plot <- ggplot(data = economics) +
  geom_line(aes(x = date, y = unemploy), 
            color = "#09557f",
            alpha = 0.6,
            size = 0.6) +
  labs(x = "Date", 
       y = "US Unemployed in Thousands",
       title = "Base Plot") +
  theme_minimal()

Scale Types

As of now, ggplot2 supports three date and time classes: POSIXct, Date and hms. Depending on the class at hand, axis ticks and labels can be controlled by using scale_*_datetime, scale_*_date or scale_*_time, respectively. Depending on whether one wants to modify the x or the y axis scale_x_* or scale_y_* are to be employed. For sake of simplicity, in the examples only scale_x_date is employed, but all discussed arguments work just the same for all mentioned scales.

Minor Modifications

Let’s start easy. With the argument limits the range of the displayed dates or time can be set. Two values of the correct date or time class have to be supplied.

 base_plot +
   scale_x_date(limits = as.Date(c("1980-01-01","2000-01-01"))) +
   ggtitle("limits = as.Date(c("1980-01-01","2000-01-01"))")

The expand argument ensures that there is some distance between the displayed data and the axes. The multiplicative constant is multiplied with the range of the displayed data, the additive is multiplied with one unit of the depicted data. The sum of the two resulting distances is added to the axis limits as padding. The resulting empty space is added at the left and right end of the x-axis or the top and bottom of the y-axis.

 base_plot +  
 scale_x_date(expand = c(0, 5000)) +   #5000/365 = 13.69863 years
   ggtitle("expand = c(0, 5000)")

position argument defines where the labels are displayed: Either “left” or “right” from the y-axis or on the “top” or on the “bottom” of the x-axis.

base_plot +  
   scale_x_date(position = "top") +
   ggtitle("position = "top"")

Axis Ticks and Grid Lines

More essential than the cosmetic modifications discussed so far are the axis ticks. There are several ways to define the axis ticks of dates and times. There are the labelled major breaks and further the minor breaks, which are not labeled but marked by grid lines. These can be customized with the arguments breaks and minor_breaks, respectively. The breaks as the well as minor_breaks can be defined by a numeric vector of exact positions or a function with the axis limits as inputs and breaks as outputs. Alternatively, the arguments can be set to NULL to display (minor) breaks at all. These options are especially handy if irregular intervals between breaks are desired.

 base_plot +  
  scale_x_date(breaks = as.Date(c("1970-01-01", "2000-01-01")),
               minor_breaks = as.Date(c("1975-01-01", "1980-01-01",
                                        "2005-01-01", "2010-01-01"))) +
   ggtitle("(minor_)breaks = fixed Dates")
base_plot +  
   scale_x_date(breaks = function(x) seq.Date(from = min(x), 
   											  to = max(x), 
   											  by = "12 years"),
                minor_breaks = function(x) seq.Date(from = min(x), 
                									to = max(x), 
                									by = "2 years")) +
   ggtitle("(minor_)breaks = custom function")
base_plot +  
	scale_x_date(breaks = NULL,
              minor_breaks = NULL) +
  ggtitle("(minor_)breaks = NULL")

Another and very convenient way to define regular breaks are the date_breaks and the date_minor_breaks argument. As input both arguments take a character vector combining a string specifying the time unit (either “sec", "min", "hour", "day", "week", "month" or "year") and an integer specifying number of said units specifying the break intervals.

base_plot +
  scale_x_date(date_breaks = "10 years",
               date_minor_breaks = "2 years") +
  ggtitle("date_(minor_)breaks = "x years"")

If both are given, date(_minor)_breaks overrules (minor_)breaks.

Axis Labels

Similar to the axis ticks, the format of the displayed labels can either be defined via the labels or the date_labels argument. The labels argument can either be set to NULL if no labels should be displayed, with the breaks as inputs and the labels as outputs. Alternatively, a character vector with labels for all the breaks can be supplied to the argument. This can be very useful, since like this virtually any character vector can be used to label the breaks. The number of labels must be the same as the number of breaks. If the breaks are defined by a function, date_breaks or by default the labels must be defined by a function as well.

base_plot +
  scale_x_date(date_breaks = "15 years",
               labels = function(x) paste((x-365), "(+365 days)")) +
  ggtitle("labels = custom function") 

base_plot +
  scale_x_date(breaks = as.Date(c("1970-01-01", "2000-01-01")),
               labels = c("~ '70", "~ '00")) +
  ggtitle("labels = character vector")  

Furthermore and very conveniently, the format of the labels can be controlled via the argument date_labels set to a string of formatting codes, defining order, format and elements to be displayed:

Code Meaning
%S second (00-59)
%M minute (00-59)
%l hour, in 12-hour clock (1-12)
%I hour, in 12-hour clock (01-12)
%H hour, in 24-hour clock (01-24)
%a day of the week, abbreviated (Mon-Sun)
%A day of the week, full (Monday-Sunday)
%e day of the month (1-31)
%d day of the month (01-31)
%m month, numeric (01-12)
%b month, abbreviated (Jan-Dec)
%B month, full (January-December)
%y year, without century (00-99)
%Y year, with century (0000-9999)

Source: Wickham 2009 p. 99

base_plot +
  scale_x_date(date_labels = "%Y (%b)") +
  ggtitle("date_labels = "%Y (%b)"") 

The choice of axis ticks and labels might seem trivial. However, one should not underestimate the amount of confusion that can be caused by too many, too less or poorly positioned axis ticks and labels. Further, economical yet clear labeling of axis ticks can increase the readability and visual appeal of any time series plot immensely. Since it is so easy to tweak the date and time axes in ggplot2 there is simply no excuse not to do so.

References

  • Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer.
Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Coding
  • Python
  • Statistics & Methods
Ensemble Methods in Machine Learning: Bagging & Subagging
Team statworx
15.4.2025
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
15.4.2025
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
15.4.2025
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
How to Speed Up Gradient Boosting by a Factor of Two
Team statworx
15.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
15.4.2025
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
15.4.2025
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
15.4.2025
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
14.4.2025
Read more
  • Machine Learning
  • Python
  • R
XGBoost Tree vs. Linear
Fabian Müller
14.4.2025
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
14.4.2025
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
14.4.2025
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
14.4.2025
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
11.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
8.4.2025
Read more
  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
25.2.2025
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
15.1.2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15.1.2025
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
6.12.2024
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
6.12.2024
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
6.12.2024
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
Automated Creation of Docker Containers
Stephan Emmer
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Machine Learning
  • Python
Data Science in Python - Getting started with Machine Learning with Scikit-Learn
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
6.12.2024
Read more
  • Recap
  • statworx
As a Data Science Intern at statworx
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
6.12.2024
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
6.12.2024
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
6.12.2024
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
6.12.2024
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 Practical Examples of NLP Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Deep Learning
Fine-tuning Tesseract OCR for German Invoices
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
New Trends in Natural Language Processing – How NLP Becomes Suitable for the Mass-Market
Dominique Lade
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
How to Provide Machine Learning Models With the Help Of Docker Containers
Thomas Alcock
6.12.2024
Read more
  • Frontend
  • Python
  • Tutorial
How To Build A Dashboard In Python – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
Whitepaper: A Maturity Model for Artificial Intelligence
Team statworx
6.12.2024
Read more
  • Data Engineering
  • R
  • Tutorial
How To Dockerize ShinyApps
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
STATWORX 2.0 – Opening of the New Headquarters in Frankfurt
Julius Heinz
6.12.2024
Read more
  • Coding
  • Python
Web Scraping 101 in Python with Requests & BeautifulSoup
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
Deep Learning Overview and Getting Started
Team statworx
6.12.2024
Read more
  • Data Science
  • R
  • Statistics & Methods
Evaluating Model Performance by Building Cross-Validation from Scratch
Team statworx
6.12.2024
Read more
  • Machine Learning
  • R
  • Statistics & Methods
What the Mape Is FALSELY Blamed For, Its TRUE Weaknesses and BETTER Alternatives!
Team statworx
6.12.2024
Read more
  • Data Visualization
  • R
Interactive Network Visualization with R
Team statworx
6.12.2024
Read more
  • Data Science
  • Tutorial
An Introduction to Dataiku DSS
Team statworx
6.12.2024
Read more
  • Coding
  • Data Visualization
  • Python
Fixing the Most Common Problem With Plotly Histograms
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
  • R
Running your R script in Docker
Team statworx
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Python
Data Science in Python – Matplotlib – Part 4
Team statworx
6.12.2024
Read more
This is some text inside of a div block.
This is some text inside of a div block.