Back to all Blog Posts

How To Create REST APIs With R Plumber

  • Data Engineering
  • R
  • Tutorial
23. January 2020
·

Stephan Emmer
Team AI Development

Data operations is an increasingly important part of data science because it enables companies to feed large business data back into production effectively. We at STATWORX, therefore, operationalize our models and algorithms by translating them into Application Programming Interfaces (APIs). Representational State Transfer (REST) APIs are well suited to be implemented as part of a modern micro-services infrastructure. They are flexible, easy to deploy, scale, and maintain, and they are further accessible by multiple clients and client types at the same time. Their primary purpose is to simplify programming by abstracting the underlying implementation and only exposing objects and actions that are needed for any further development and interaction.

An additional advantage of APIs is that they allow for an easy combination of code written in different programming languages or by different development teams. This is because APIs are naturally separated from each other, and communication with and between APIs is handled by IP or URL (http), typically using JSON or XML format. Imagine, e.g., an infrastructure, where an API that’s written in Python and one that’s written in R communicate with each other and serve an application written in JavaScript.

In this blog post, I will show you how to translate a simple R script, which transforms tables from wide to long format, into a REST API with the R package Plumber and how to run it locally or with Docker. I have created this example API for our trainee program, and it serves our new data scientists and engineers as a starting point to familiarize themselves with the subject.

Translate the R Script

Transforming an R script into a REST API is quite easy. All you need, in addition to R and RStudio, is the package Plumber and optionally Docker. REST APIs can be interacted with by sending a REST Request, and the probably most commonly used ones are GET, PUT, POST, and DELETE. Here is the code of the example API, that transforms tables from wide to long or from long to wide format:

## transform wide to long and long to wide format
#' @post /widelong
#' @get /widelong
function(req) {
 # library
 require(tidyr)
 require(dplyr)
 require(magrittr)
 require(httr)
 require(jsonlite)

 # post body
 body <- jsonlite::fromJSON(req(dollar sign)postBody)

 .data <- body(dollar sign).data
 .trans <- body(dollar sign).trans
 .key <- body(dollar sign).key
 .value <- body(dollar sign).value
 .select <- body(dollar sign).select

 # wide or long transformation
 if(.trans == 'l' || .trans == 'long') {
   .data %<>% gather(key = !!.key, value = !!.value, !!.select)
   return(.data)
 } else if(.trans == 'w' || .trans == 'wide') {
   .data %<>% spread(key = !!.key, value = !!.value)
   return(.data)
 } else {
   print('Please specify the transformation')
 }
}

As you can see, it is a standard R function, that is extended by the special plumber comments @post and @get, which enable the API to respond to those types of requests. It is necessary to add the path, /widelong, to any incoming request. That is done because it is possible to stack several API functions, which respond to different paths. We could, e.g., add another function with the path /naremove to our API, which removes NAs from tables.

The R function itself has one function argument req, which is used to receive a (POST) Request Body. In general, there are two different possibilities to send additional arguments and objects to a REST API, the header and the body. I decided to use a body only and no header at all, which makes the API cleaner, safer and allows us to send larger objects. A header could, e.g., be used to set some optional function arguments, but should be used sparsely otherwise.

Using a body with the API is also the reason to allow for GET and POST Requests (@post, @get) at the same time. While some clients prefer to send a body with a GET Request, when they do not permanently post something to the server etc., many other clients do not have the option to send a body with a GET Request at all. In this case, it is mandatory to add a POST Request. Typical clients are Applications, Integrated Development Environments (IDEs), and other APIs. By accepting both request types, our API, therefore, gains greater response flexibility.

For the request-response format of the API, I have decided to stick with the JavaScript Object Notation (JSON), which is probably the most common format. It would be possible to use Extensible Markup Language (XML) with R Plumber instead as well. The decision for one or the other will most likely depend on which additional R packages you want to use or on which format the API’s clients are predominantly using. The R packages that are used to handle REST Requests in my example API are jsonlite and httr. The three Tidyverse packages are used to do the table transformation to wide or long.

RUN the API

The finished REST API can be run locally with R or RStudio as follows:

library(plumber)

widelong_api <- plumber::plumb("./path/to/directory/widelongwide.R")
widelong_api(dollar sign)run(host = '127.0.0.1', port = 8000)

Upon starting the API, the Plumber package provides us with an IP address, and a port and a client, e.g., another R instance, can now begin to send REST Requests. It also opens a browser tool called Swagger, which can be useful to check if your API is working as intended. Once the development of an API is finished, I would suggest to build a docker image and run it in a container. That makes the API highly portable and independent of its host system. Since we want to use most APIs in production and deploy them to, e.g., a company server or the cloud, this is especially important. Here is the Dockerfile to build the docker image of the example API:

FROM trestletech/plumber

# Install dependencies
RUN apt-get update --allow-releaseinfo-change && apt-get install -y
   liblapack-dev
   libpq-dev

# Install R packages
RUN R -e "install.packages(c('tidyr', 'dplyr', 'magrittr', 'httr', 'jsonlite'),
repos = 'https://cran.us.r-project.org')"

# Add API
COPY ./path/to/directory/widelongwide.R /widelongwide.R

# Make port available
EXPOSE 8000

# Entrypoint
ENTRYPOINT ["R", "-e",
"widelong <- plumber::plumb('widelongwide.R');
widelong(dollar sign)run(host = '0.0.0.0', port= 8000)"]

CMD ["/widelongwide.R"]

Send a REST Request

The wide-long example API can generally respond to any client sending a POST or GET Request with a Body in JSON format, that contains a table in csv format and all needed information on how to transform it. Here is an example for a web application, which I have written for our trainee program to supplement the wide-long API:

The application is written in R Shiny, which is a great R package to transform your static plots and outputs into an interactive dashboard. If you are interested in how to create dashboards in R, check out other posts on our STATWORX Blog.

Last but not least here is an example on how to send a REST Request from R or RStudio:

library(httr)
library(jsonlite)
options(stringsAsFactors = FALSE)

# url for local testing
url <- "https://127.0.0.1:8000"

# url for docker container
url <- "https://0.0.0.0:8000"

# read example stock data
.data <- read.csv('./path/to/data/stocks.csv')

# create example body
body <- list(
 .data = .data,
 .trans = "w",
 .key = "stock",
 .value = "price",
 .select = c("X","Y","Z")
)

# set API path
path <- 'widelong'

# send POST Request to API
raw.result <- POST(url = url, path = path, body = body, encode = 'json')

# check status code
raw.result(dollar sign)status_code

# retrieve transformed example stock data
.t_data <- fromJSON(rawToChar(raw.result(dollar sign)content))

As you can see, it is quite easy to make REST Requests in R. If you need some test data, you could use the stocks data example from the Tidyverse.

Summary

In this blog post, I showed you how to translate a simple R script, which transforms tables from wide to long format, into a REST API with the R package Plumber and how to run it locally or with Docker. I hope you enjoyed the read and learned something about operationalizing R scripts into REST APIs with the R package Plumber and how to run them locally and with Docker. You are of welcome to copy and use any code from this blog post to start and create your REST APIs with R.

Until then, stay tuned and visit our STATWORX Blog again soon.

We’re hiring!

Data Engineering is your jam and you’re looking for a job? We’re currently looking for Junior Consultants and Consultants in Data Engineering. Check the requirements and benefits of working with us on our career site. We’re looking forward to your application!

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Text Classification
Fabian Müller
17.4.2025
Read more
  • Coding
  • Python
Making Of: A Free API For COVID-19 Data
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • Python
  • R
R and Python: Using Reticulate to Get the Best of Both Worlds
Team statworx
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Getting Started With Flexdashboards in R
Thomas Alcock
17.4.2025
Read more
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Why Causality Matters
Team statworx
17.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Coordinate Systems in ggplot2: Easily Overlooked and Rather Underrated
Team statworx
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 1
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
statworx 2019 – A Year in Review
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Wine, Castles & Hiking!
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
Off To New Adventures: STATWORX Office Soft Opening
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Year-End-Event in Belgium
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
statworx summer barbecue 2019
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Compiling R Code in Sublime Text
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Make RStudio Look the Way You Want — Because Beauty Matters
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
2020 – A Year in Review for Me and GPT-3
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • R
Master R shiny: One trick to build maintainable and scaleable event chains
Team statworx
17.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
Ensemble Methods in Machine Learning: Bagging & Subagging
Team statworx
15.4.2025
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
15.4.2025
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
15.4.2025
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
How to Speed Up Gradient Boosting by a Factor of Two
Team statworx
15.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
15.4.2025
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
15.4.2025
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
15.4.2025
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
14.4.2025
Read more
  • Machine Learning
  • Python
  • R
XGBoost Tree vs. Linear
Fabian Müller
14.4.2025
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
14.4.2025
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
14.4.2025
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
14.4.2025
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
11.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
8.4.2025
Read more
  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
25.2.2025
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
15.1.2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15.1.2025
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
6.12.2024
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
6.12.2024
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
6.12.2024
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
Automated Creation of Docker Containers
Stephan Emmer
6.12.2024
Read more
  • Coding
  • Data Visualization
  • R
Customizing Time and Date Scales in ggplot2
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Machine Learning
  • Python
Data Science in Python - Getting started with Machine Learning with Scikit-Learn
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
6.12.2024
Read more
  • Recap
  • statworx
As a Data Science Intern at statworx
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
6.12.2024
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
6.12.2024
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
6.12.2024
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
6.12.2024
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
6.12.2024
Read more
This is some text inside of a div block.
This is some text inside of a div block.