Back to all Blog Posts

R and Python: Using Reticulate to Get the Best of Both Worlds

  • Coding
  • Python
  • R
15. März 2019
·

Team statworx

It’s March 15th and that means it’s World Sleep Day (WSD). Don’t snooze off just yet! We’re about to check out a package that can make using R and Python a dream. It’s called reticulate and we’ll use it to train a Support Vector Machine for a simple classification task.

What’s WSD got do with data science?

I discovered WSD on the train to HQ in Frankfurt. If you’ve travelled by train before, you know that the only thing worse than disgruntled staff is unconscious staff. It hasn’t happened to me yet, but hey let’s face it: the personnel shortage of Deutsche Bahn isn’t getting better any time soon.

This brings me to the topic of today’s blog post: the sleeping habits of railroad workers. For this, I pulled a dataset from the US Federal Railroad Administration (FRA). The FRA conducted a survey on the work and sleep schedules of its train dispatchers. You can find it here.

As the title suggests, we’re going to use both R and Python to predict whether a dispatcher was diagnosed with a sleeping disorder. Before we get started, a warning to all R and Python purists out there: the example below is a bit contrived. Everything we’re about to do can be done entirely in either one of the languages.

So why bother using R and Python?

As data scientists, we ideally have a firm grasp on both R and Python. After all, as my colleague Fran will discuss in an upcoming post, both have unique strengths that we can use to our advantage. Personally, I love R for the tidyverse and ggplot2, Python for its unified machine learning (ML) API scikit-learn.

Alright, point taken you might say, but it’s a hassle to switch back and forth. It’s not worth it, and until a few years ago you would have been right! However, nowadays there are some cool ways to get the best of both worlds. If you’re coming from the R community look no further than reticulate!

The reticulate package gives you a set of tools to use both R and Python interactively within an R session. Say you’re working in Python and need a specialized statistical model from an R package – or you’re working in R and want to access Python’s ML capabilities. Well, you’ve come to the right place. This package is a godsend for tasks where it’s required, or simply more convenient, to use both languages as part of your workflow.

Now, there are different ways to use R and Python interactively and I encourage you to check reticulate’s github site to see which one suits you best. In this post, we’re going through a simple example of how to use Python modules within an R Notebook (i.e. Markdown document).

How to get started?

If you’re working on a Mac, Python comes preinstalled on your system. Irrespective of the machine you’re on though, I recommended downloading the Anaconda distribution, so you have everything you need. One more note: you need RStudio’s newest preview version 1.2 for this to work. That’s it!

Let’s open an R Notebook, insert an R chunk and (install and) load the reticulate library. Immediately after loading reticulate, use the use_python() command with the appropriate path. Placing it later in the script causes problems for some people. I specified my path as follows (note: yours may differ):

library(tidyverse)
library(recipes)
library(reticulate)
use_python("/anaconda3/bin/python")

We’re good to go. Let’s read in the data and perform some transformations with dplyr. This is mostly recoding work. As you can see in the select command, we pick a handful of variables like sex, age, caffeine consumption, health and stress to predict whether a railroad dispatcher was diagnosed with a sleeping disorder.

1) Read in the data

data <- readxl::read_xls("sleep.xls")

sleep <- data %>%
 select(
     Diagnosed_Sleep_disorder, Age_Group, Sex, Total_years_dispatcher,
     Total_years_present_job, Marital_Status, Childrendependents,
     Children_under_2_yrs, Caff_Beverages, Sick_Days_in_last_year,
     Health_status, Avg_Work_Hrs_Week, FRA_report, Phys_Drained,
     Mentally_Drained, Alert_at_Work, Job_Security
 ) %>%
 rename_all(tolower) %>%
 mutate_if(is.character, as.numeric) %>%
 mutate_at(vars(diagnosed_sleep_disorder, sex, caff_beverages, fra_report),
           ~ -(. - 2)) %>%
 mutate_at(vars(marital_status), ~ (. - 1)) %>%
 drop_na()

Now that we have the variables we want, it’s time to get the data into the right shape. Here’s one more reason to love R: the recipes package. If you’re not familiar with it, check it out. You may find its workflow a bit peculiar at first, but once you get used to it, it makes data preparation a breeze.

What we’re doing here is straightforward. First, we split the data into a training and test set. Next, we specify a data preparation recipe, which consists of three steps: one hot encoding factor predictors, standardising numeric predictors and down-sampling the data. One hot encoding and standardising ensure that the Support Vector Machine algorithm works properly. Down-sampling is a counter-measure against the class imbalance in our dataset.

2) Prepare the data

numeric_variables <- c(
 "total_years_dispatcher", "total_years_present_job",
 "childrendependents", "children_under_2_yrs",
 "sick_days_in_last_year", "avg_work_hrs_week"
)

factor_variables <- setdiff(colnames(sleep), numeric_variables)

sleep <- mutate_at(sleep, vars(factor_variables), as.factor)

set.seed(2019)
index <- sample(1:nrow(sleep), floor(nrow(sleep) * .75))

sleep_train <- sleep[index, ]
sleep_test <- sleep[-index, ]

recipe_formula <- recipes::recipe(diagnosed_sleep_disorder ~ ., sleep_train)

recipe_steps <- recipe_formula %>%
 recipes::step_dummy(factor_variables, -all_outcomes(), one_hot = TRUE) %>%
 recipes::step_downsample(diagnosed_sleep_disorder) %>%
 recipes::step_center(numeric_variables) %>%
 recipes::step_scale(numeric_variables)

recipe_prep <- recipes::prep(recipe_steps, sleep_train, retain = TRUE)

training_data <- juice(recipe_prep)
testing_data <- bake(recipe_prep, sleep_test)

Now comes the part where Python shines: its unified ML library scikit-learn. Let’s go ahead and import the Support Vector Machine (SVM) classifier as well as some other modules to tune and evaluate our model.

SVM is a supervised learning algorithm. It works by finding a hyperplane in an N-dimensional space, which separates two (or more) classes as cleanly as possible. More technically, SVM maximizes the margin or the distance between the separating hyperplane and the closest data points. This is why SVM is also called a maximum margin estimator.

SVM is mostly used for classification, but it can do regression too. The upside is that it works with high-dimensional data and different kernel functions, meaning it can flexibly adapt to different types of data. Its downside is that computation becomes costly with large datasets and that it reacts sensitively to hyperparameters. Still, for some applications SVM performs quite competitively.

Combining SVM with kernels allows us to project our data into a higher-dimensional space. The point of this is to make the classes better separable. In our example here, we’ll use a simple linear and a radial basis function kernel. The latter can map the predictor space into infinite dimensions.

3) Train the model

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn import svm
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

y_train = r.training_data['diagnosed_sleep_disorder']
X_train = r.training_data.drop('diagnosed_sleep_disorder', axis = 1)

y_test = r.testing_data['diagnosed_sleep_disorder']
X_test = r.testing_data.drop('diagnosed_sleep_disorder', axis = 1)

clf = svm.SVC(kernel = 'linear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

clf = svm.SVC(kernel = 'rbf')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

We can tune an SVM with the help of two parameters: C and gamma. C is a regularisation parameter that represents how much error we’re willing to tolerate. The higher C, the stricter we are, the more exactly SVM will try to fit the data by picking a hyperplane with smaller margins. As a consequence, higher C’s carry a higher risk of overfitting. For the radial basis function kernel, we can also tune gamma which determines the size of the kernel and with it the decision boundary. The higher gamma, the closer the decision boundary is to single training examples. A higher gamma can lead to a better model, yet likewise increases the risk of overfitting.

4) Tune the model

param_grid = [{'C': [0.01, 0.1, 1, 10, 100],
              'gamma': [0.001, 0.01, 0.1, 1, 10],
              'kernel': ['rbf', 'linear']}]

grid = GridSearchCV(svm.SVC(), param_grid, cv = 5, scoring = 'balanced_accuracy')

grid.fit(X_train, y_train)

print(grid.best_params_)

From the cross-validation procedure, it appears that a gamma of 0.1 and a C of 0.01 are optimal in combination with a radial basis function kernel. So, let’s train our model with this kernel and the hyperparameter values.

5) Evaluate the accuracy of the model

clf = grid.best_estimator_
y_pred = clf.predict(X_test)

print('Confusion Matrix:nn', confusion_matrix(y_test, y_pred))
print('nClassification Report:nn', classification_report(y_test, y_pred))
print('nTraining Set Accuracy: {:.2f}%'.format(clf.score(X_train, y_train)))
print('nTest Set Accuracy: {:.2f}%'.format(clf.score(X_test, y_test)))

conf_mat = confusion_matrix(y_test, y_pred)

sns.heatmap(conf_mat, square = True, annot = True, fmt = 'g',
           cbar = False, cmap = 'viridis')
plt.xlabel('predicted')
plt.ylabel('observed')
plt.show()

In this case, we achieve a training set accuracy of 93 per cent and a test set accuracy of 74 per cent. This suggests that some overfitting has occurred. To achieve a higher accuracy (or better: sensitivity/recall), we could experiment with different kernels and/or hyperparameter values. But this I’d leave up to you. With reticulate, you now have a tool to get the best of both R and Python.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Text Classification
Fabian Müller
17.4.2025
Read more
  • Coding
  • Python
Making Of: A Free API For COVID-19 Data
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Getting Started With Flexdashboards in R
Thomas Alcock
17.4.2025
Read more
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Why Causality Matters
Team statworx
17.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Coordinate Systems in ggplot2: Easily Overlooked and Rather Underrated
Team statworx
17.4.2025
Read more
  • Data Engineering
  • R
  • Tutorial
How To Create REST APIs With R Plumber
Stephan Emmer
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 1
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
statworx 2019 – A Year in Review
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Wine, Castles & Hiking!
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
Off To New Adventures: STATWORX Office Soft Opening
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Year-End-Event in Belgium
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
statworx summer barbecue 2019
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Compiling R Code in Sublime Text
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Make RStudio Look the Way You Want — Because Beauty Matters
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
2020 – A Year in Review for Me and GPT-3
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • R
Master R shiny: One trick to build maintainable and scaleable event chains
Team statworx
17.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
Ensemble Methods in Machine Learning: Bagging & Subagging
Team statworx
15.4.2025
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
15.4.2025
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
15.4.2025
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
How to Speed Up Gradient Boosting by a Factor of Two
Team statworx
15.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
15.4.2025
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
15.4.2025
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
15.4.2025
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
14.4.2025
Read more
  • Machine Learning
  • Python
  • R
XGBoost Tree vs. Linear
Fabian Müller
14.4.2025
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
14.4.2025
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
14.4.2025
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
14.4.2025
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
11.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
8.4.2025
Read more
  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
25.2.2025
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
15.1.2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15.1.2025
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
6.12.2024
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
6.12.2024
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
6.12.2024
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
Automated Creation of Docker Containers
Stephan Emmer
6.12.2024
Read more
  • Coding
  • Data Visualization
  • R
Customizing Time and Date Scales in ggplot2
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Machine Learning
  • Python
Data Science in Python - Getting started with Machine Learning with Scikit-Learn
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
6.12.2024
Read more
  • Recap
  • statworx
As a Data Science Intern at statworx
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
6.12.2024
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
6.12.2024
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
6.12.2024
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
6.12.2024
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
6.12.2024
Read more
This is some text inside of a div block.
This is some text inside of a div block.