Back to all Blog Posts

Coordinate Systems in ggplot2: Easily Overlooked and Rather Underrated

  • Coding
  • Data Visualization
  • R
07.05.2018
·

Team statworx

All plots have coordinate systems. Perhaps because they are such an integral element of plots, they are easily overlooked. However, in ggplot2, there are several very useful options to customize the coordinate systems of plots, which we will not overlook but explore in this blog post.

Since it is spring, we will use a random subset of the famous iris data set. When we plot the petal length against the petal width, and map species onto color and play around a little with the shape, color and sizes of aesthetics, one obtains this vernal plot:

plot base iris data

<span class="hljs-comment"># Base plot</span>
plot_base <- ggplot(data = df_iris) +
 geom_point(aes(x = Petal.Length, y = Petal.Width, color = Species),
            size = <span class="hljs-number">3</span>, alpha = <span class="hljs-number">0.9</span>, shape = <span class="hljs-number">8</span>) +
 geom_point(aes(x = Petal.Length, y = Petal.Width),
            color = <span class="hljs-string">"yellow"</span>, size = <span class="hljs-number">0.4</span>) +
 scale_color_manual(values = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#0000FF"</span>)) +
 theme_minimal()

Cartesian coordinate system

Zooming in and out

The coordinate system can be manipulated by adding one of ggplot’s different coordinate systems. When you are imagining a coordinate system, you are most likely thinking of a Cartesian one. The Cartesian coordinate system combines x and y dimensions orthogonally and is ggplots default (coord_cartesian).

There also are several varaitions of the familiar Cartesian coordinate system in ggplot, namely coord_fixed, coord_flip and coord_trans. For all of them, the displayed section of the data can be specified by defining the maximal value depicted on the x (xlim =) and y (ylim =) axis. This allows to “zoom in” or “zoom out” of a plot. It is a great advantage, that all manipulations of the coordinate system only alter the depiction of the data but not the data itself.

<span class="hljs-comment"># Zooming in with xlim/ylim</span>
plot_base +
 coord_cartesian(xlim = 5, ylim = 2) +
 ggtitle("coord_cartesian <span class="hljs-keyword">with</span> xlim = <span class="hljs-number">5</span> <span class="hljs-keyword">and</span> ylim = <span class="hljs-number">2</span><span class="hljs-string">")
</span>

zoomed scatter plot

Specifying the “aspect ratio” of the axes

Via coord_fixed one can specify the exact ratio of the length of a y unit relative to the length of an x unit within the final visualization.

# Setting the <span class="hljs-string">"aspect ratio"</span> of <span class="hljs-symbol">y</span> vs. <span class="hljs-symbol">x</span> units
plot_base +
 coord_fixed(ratio = <span class="hljs-number">1</span>/<span class="hljs-number">2</span>) +
 ggtitle(<span class="hljs-string">"coord_fixed with ratio = 1/2"</span>)

plot aspect ratio

Transforming the scales of the axes

This helps to emphasize the exact insight one wants to communicate. Another way to do so is coord_trans, which allows several transformations of the x and y variable (see table below, taken from Wickham 2016 page 97). Let me stress this again, very conveniently such transformations only pertain to the depicted – not the actual – scale of the data. This also is the reason why, regardless of the conducted transformation, the original values are used as axis labels.

f(x)
NameFunktion Inverse asnexpidentityloglog10log2logitpow10probitrecipreversesqrt
x

<span class="hljs-comment"># Transforming the axes </span>
<span class="hljs-attribute">plot_base</span> +
 coord_trans(x = <span class="hljs-string">"log"</span>, y = <span class="hljs-string">"log2"</span>) +
 ggtitle(<span class="hljs-string">"coord_trans with x = "log" and y = "log2""</span>)

transformed data

Swapping the axes

The last of the Cartesian options, cood_flip, swaps x- and y-axis. For example, this option can be useful, when we intend to change the orientation of univariate plots as histograms or plot types – like box plots – that visualize the distribution of a continuous variable over the categories of another variable. Nonetheless, coord_flip also works with all other plots. This multiplies the overall possibilities for designing plots, especially since all Cartesian coordinate systems can be combined.

<span class="hljs-comment"># Swapping axes </span>
<span class="hljs-comment"># base plot #2</span>
p1 <- ggplot(data = df_iris) +
 geom_bar(aes(<span class="hljs-keyword">x</span> = Species, fill = Species), alpha = <span class="hljs-number">0</span>.<span class="hljs-number">6</span>) +
 scale_fill_manual(<span class="hljs-keyword">values</span> = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal()

<span class="hljs-comment"># base plot & coord_flip()</span>
p2 <- ggplot(data = df_iris) +
 geom_bar(aes(<span class="hljs-keyword">x</span> = Species, fill = Species), alpha = <span class="hljs-number">0</span>.<span class="hljs-number">6</span>) +
 scale_fill_manual(<span class="hljs-keyword">values</span> = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal() +
 coord_flip()

gridExtra::grid.arrange(p1, p2, top = <span class="hljs-string">"Bar plot without and with coord_flip"</span>)

fliped coordinate system

Polar coordinate system

The customization of Cartesian coordinate systems allows for the fine-tuning of plots. However, coord_polar, the final coordinate system discussed here, changes the whole character of a plot. By using coord_polar, bar geoms are transformed to pie charts or “bullseye” plots, while line geoms are transformed to radar charts. This is done by mapping x and y to the angle and radius of the resulting plot. By default, the x variable is mapped to the angle but by setting the theta augment in coord_polar to “y” this can be changed.

pie charts
polygon plot

While such plots might shine with respect to novelty and looks, their perceptual properties are intricate, and their correct interpretation may be quite hard and rather unintuitive.

<span class="hljs-meta"># Base plot 2 (long format, x = 1 is summed up to generate count)</span>
plot_base_2 <- df_iris %>%
 dplyr::mutate(x = <span class="hljs-number">1</span>) %>%
 ggplot(.) +
 geom_bar(aes(x = x, fill = Species), alpha = <span class="hljs-number">0.6</span>) +
 theme(axis.text = element_blank(),
       axis.ticks = element_blank(),
       axis.title = element_blank()) +
 scale_fill_manual(values = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal() +
 ggtitle(<span class="hljs-string">"base plot"</span>)

<span class="hljs-meta"># Bullseye plot </span>
<span class="hljs-meta"># geom_bar & coord_polar(theta = <span class="hljs-meta-string">"x"</span>)</span>
p2 <- plot_base_2 +
 coord_polar(theta = <span class="hljs-string">"x"</span>) +
 ggtitle(<span class="hljs-string">"theta = "x""</span>)

<span class="hljs-meta"># Pie chart </span>
<span class="hljs-meta"># geom_bar & coord_polar(theta = <span class="hljs-meta-string">"y"</span>)</span>
p3 <- plot_base_2 +
 coord_polar(theta = <span class="hljs-string">"y"</span>) +
 ggtitle(<span class="hljs-string">"theta = "y""</span>)

gridExtra::grid.arrange(p2, p3, plot_base_2, top = <span class="hljs-string">"geom_bar & coord_polar"</span>, ncol = <span class="hljs-number">2</span>)
# Base plot <span class="hljs-number">3</span> (long format, <span class="hljs-built_in">mean</span> width/length of sepals/petals calculated)
plot_base_3 <- iris %>%
 dplyr::group_by(Species) %>%
 dplyr::summarise(Petal.Length = <span class="hljs-built_in">mean</span>(Petal.Length),
                  Sepal.Length = <span class="hljs-built_in">mean</span>(Sepal.Length),
                  Sepal.Width = <span class="hljs-built_in">mean</span>(Sepal.Width),
                  Petal.Width = <span class="hljs-built_in">mean</span>(Petal.Width)) %>%
 reshape2::melt() %>%
 ggplot() +
 geom_polygon(aes(group = Species, color = Species, <span class="hljs-symbol">y</span> = value, <span class="hljs-symbol">x</span> = variable),
 fill = NA) +
 scale_color_manual(values = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal() +
 ggtitle(<span class="hljs-string">"base plot"</span>)

# Radar plot
# geom_polygon & coord_polar
p2 <- plot_base_3 +
 theme_minimal() +
 coord_polar() +
 ggtitle(<span class="hljs-string">"coord_polar"</span>)

gridExtra::grid.arrange(plot_base_3, p2, top = <span class="hljs-string">"geom_polygon & coord_polar"</span>, ncol = <span class="hljs-number">2</span>)

References

  • Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.
Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Text Classification
Fabian Müller
17.4.2025
Read more
  • Coding
  • Python
Making Of: A Free API For COVID-19 Data
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • Python
  • R
R and Python: Using Reticulate to Get the Best of Both Worlds
Team statworx
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Getting Started With Flexdashboards in R
Thomas Alcock
17.4.2025
Read more
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Why Causality Matters
Team statworx
17.4.2025
Read more
  • Data Engineering
  • R
  • Tutorial
How To Create REST APIs With R Plumber
Stephan Emmer
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 1
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
statworx 2019 – A Year in Review
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Wine, Castles & Hiking!
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
Off To New Adventures: STATWORX Office Soft Opening
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Year-End-Event in Belgium
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
statworx summer barbecue 2019
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Compiling R Code in Sublime Text
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Make RStudio Look the Way You Want — Because Beauty Matters
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
2020 – A Year in Review for Me and GPT-3
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • R
Master R shiny: One trick to build maintainable and scaleable event chains
Team statworx
17.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
Ensemble Methods in Machine Learning: Bagging & Subagging
Team statworx
15.4.2025
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
15.4.2025
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
15.4.2025
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
How to Speed Up Gradient Boosting by a Factor of Two
Team statworx
15.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
15.4.2025
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
15.4.2025
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
15.4.2025
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
14.4.2025
Read more
  • Machine Learning
  • Python
  • R
XGBoost Tree vs. Linear
Fabian Müller
14.4.2025
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
14.4.2025
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
14.4.2025
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
14.4.2025
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
11.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
8.4.2025
Read more
  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
25.2.2025
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
15.1.2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15.1.2025
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
6.12.2024
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
6.12.2024
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
6.12.2024
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
Automated Creation of Docker Containers
Stephan Emmer
6.12.2024
Read more
  • Coding
  • Data Visualization
  • R
Customizing Time and Date Scales in ggplot2
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Machine Learning
  • Python
Data Science in Python - Getting started with Machine Learning with Scikit-Learn
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
6.12.2024
Read more
  • Recap
  • statworx
As a Data Science Intern at statworx
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
6.12.2024
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
6.12.2024
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
6.12.2024
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
6.12.2024
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
6.12.2024
Read more
This is some text inside of a div block.
This is some text inside of a div block.