Zurück zu allen Blogbeiträgen

Koordinatensysteme in ggplot2: Leicht übersehen und ziemlich unterschätzt

  • Coding
  • Data Visualization
  • R
07.05.2018
·

Team statworx

Alle Plots haben Koordinatensysteme. Vielleicht gerade weil sie ein so integraler Bestandteil von Plots sind, werden sie leicht übersehen. In ggplot2 jedoch gibt es mehrere sehr nützliche Optionen, um die Koordinatensysteme von Plots anzupassen – diese werden wir in diesem Blogpost nicht übersehen, sondern genau erkunden.

Da gerade Frühling ist, verwenden wir eine zufällige Teilmenge des berühmten iris-Datensatzes. Wenn wir die petal length gegen die petal width auftragen, die species auf die Farbe abbilden und ein wenig mit den aesthetics wie shape, color und size spielen, erhalten wir diesen frühlingshaften Plot:

plot base iris data

<span class="hljs-comment"># Base plot</span>
plot_base <- ggplot(data = df_iris) +
 geom_point(aes(x = Petal.Length, y = Petal.Width, color = Species),
            size = <span class="hljs-number">3</span>, alpha = <span class="hljs-number">0.9</span>, shape = <span class="hljs-number">8</span>) +
 geom_point(aes(x = Petal.Length, y = Petal.Width),
            color = <span class="hljs-string">"yellow"</span>, size = <span class="hljs-number">0.4</span>) +
 scale_color_manual(values = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#0000FF"</span>)) +
 theme_minimal()

Kartesisches Koordinatensystem

Hinein- und Herauszoomen

Das Koordinatensystem kann manipuliert werden, indem man eines der verschiedenen Koordinatensysteme von ggplot hinzufügt. Wenn man sich ein Koordinatensystem vorstellt, denkt man höchstwahrscheinlich an ein kartesisches. Das Cartesian coordinate system kombiniert die x- und y-Dimension orthogonal und ist der Standard in ggplot (coord_cartesian).

Es gibt zudem mehrere Varianten des bekannten kartesischen Koordinatensystems in ggplot, nämlich coord_fixed, coord_flip und coord_trans. Für alle diese Varianten kann der dargestellte Abschnitt der Daten angegeben werden, indem man den maximal dargestellten Wert auf der x-Achse (xlim =) und der y-Achse (ylim =) definiert. Dies ermöglicht es, in einen Plot hinein oder herauszuzoomen.

Ein großer Vorteil besteht darin, dass alle Manipulationen des Koordinatensystems lediglich die Darstellung der Daten verändern – nicht aber die Daten selbst.

<span class="hljs-comment"># Zooming in with xlim/ylim</span>
plot_base +
 coord_cartesian(xlim = 5, ylim = 2) +
 ggtitle("coord_cartesian <span class="hljs-keyword">with</span> xlim = <span class="hljs-number">5</span> <span class="hljs-keyword">and</span> ylim = <span class="hljs-number">2</span><span class="hljs-string">")
</span>

zoomed scatter plot

Das „Seitenverhältnis“ der Achsen festlegen

Mit coord_fixed kann man das genaue Verhältnis der Länge einer y-Einheit zur Länge einer x-Einheit in der endgültigen Visualisierung festlegen (aspect ratio).

# Setting the <span class="hljs-string">"aspect ratio"</span> of <span class="hljs-symbol">y</span> vs. <span class="hljs-symbol">x</span> units
plot_base +
 coord_fixed(ratio = <span class="hljs-number">1</span>/<span class="hljs-number">2</span>) +
 ggtitle(<span class="hljs-string">"coord_fixed with ratio = 1/2"</span>)

plot aspect ratio

Transformation der Skalen der Achsen

Dies hilft dabei, genau die Erkenntnis hervorzuheben, die man vermitteln möchte. Eine weitere Möglichkeit dafür bietet coord_trans, das verschiedene Transformationen der x- und y-Variablen erlaubt (siehe Tabelle unten, entnommen aus Wickham 2016, Seite 97).

Ich möchte das noch einmal betonen: Sehr praktisch ist, dass sich solche Transformationen nur auf die dargestellte Skala beziehen – nicht auf die tatsächlichen Daten.

Das ist auch der Grund, warum – unabhängig von der durchgeführten Transformation – die Originalwerte als Achsenbeschriftungen verwendet werden.

f(x)
NameFunktion Inverse asnexpidentityloglog10log2logitpow10probitrecipreversesqrt
x

<span class="hljs-comment"># Transforming the axes </span>
<span class="hljs-attribute">plot_base</span> +
 coord_trans(x = <span class="hljs-string">"log"</span>, y = <span class="hljs-string">"log2"</span>) +
 ggtitle(<span class="hljs-string">"coord_trans with x = "log" and y = "log2""</span>)

transformed data

Achsen vertauschen

Die letzte der kartesischen Optionen, coord_flip, vertauscht die x- und y-Achse. Diese Option kann beispielsweise nützlich sein, wenn man die Ausrichtung von univariaten Plots wie Histogrammen oder Plot-Typen wie Boxplots ändern möchte – also solchen, die die Verteilung einer kontinuierlichen Variable über die Kategorien einer anderen Variable darstellen.

Nichtsdestotrotz funktioniert coord_flip auch mit allen anderen Plots. Dadurch vervielfachen sich die gestalterischen Möglichkeiten für Plots – insbesondere, da sich alle kartesischen Koordinatensysteme miteinander kombinieren lassen.

<span class="hljs-comment"># Swapping axes </span>
<span class="hljs-comment"># base plot #2</span>
p1 <- ggplot(data = df_iris) +
 geom_bar(aes(<span class="hljs-keyword">x</span> = Species, fill = Species), alpha = <span class="hljs-number">0</span>.<span class="hljs-number">6</span>) +
 scale_fill_manual(<span class="hljs-keyword">values</span> = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal()

<span class="hljs-comment"># base plot & coord_flip()</span>
p2 <- ggplot(data = df_iris) +
 geom_bar(aes(<span class="hljs-keyword">x</span> = Species, fill = Species), alpha = <span class="hljs-number">0</span>.<span class="hljs-number">6</span>) +
 scale_fill_manual(<span class="hljs-keyword">values</span> = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal() +
 coord_flip()

gridExtra::grid.arrange(p1, p2, top = <span class="hljs-string">"Bar plot without and with coord_flip"</span>)

fliped coordinate system

Polares Koordinatensystem

Die Anpassung kartesischer Koordinatensysteme erlaubt eine feine Abstimmung von Plots. Doch coord_polar, das letzte hier behandelte Koordinatensystem, verändert den gesamten Charakter eines Plots.

Durch die Verwendung von coord_polar werden bar geoms in Kreisdiagramme (pie charts) oder „Zielscheiben“-Plots (bullseye plots) verwandelt, während line geoms in Radar-Charts umgewandelt werden.

Dies geschieht, indem x und y den Winkeln und Radien des resultierenden Plots zugewiesen werden. Standardmäßig wird die x-Variable dem Winkel zugeordnet, aber durch Setzen des Arguments theta in coord_polar auf "y" kann dies geändert werden.

pie charts
polygon plot

Auch wenn solche Plots in Bezug auf Neuheit und Optik glänzen mögen, sind ihre wahrnehmungspsychologischen Eigenschaften komplex, und ihre korrekte Interpretation kann ziemlich schwierig und eher unintuitiv sein.

<span class="hljs-meta"># Base plot 2 (long format, x = 1 is summed up to generate count)</span>
plot_base_2 <- df_iris %>%
 dplyr::mutate(x = <span class="hljs-number">1</span>) %>%
 ggplot(.) +
 geom_bar(aes(x = x, fill = Species), alpha = <span class="hljs-number">0.6</span>) +
 theme(axis.text = element_blank(),
       axis.ticks = element_blank(),
       axis.title = element_blank()) +
 scale_fill_manual(values = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal() +
 ggtitle(<span class="hljs-string">"base plot"</span>)

<span class="hljs-meta"># Bullseye plot </span>
<span class="hljs-meta"># geom_bar & coord_polar(theta = <span class="hljs-meta-string">"x"</span>)</span>
p2 <- plot_base_2 +
 coord_polar(theta = <span class="hljs-string">"x"</span>) +
 ggtitle(<span class="hljs-string">"theta = "x""</span>)

<span class="hljs-meta"># Pie chart </span>
<span class="hljs-meta"># geom_bar & coord_polar(theta = <span class="hljs-meta-string">"y"</span>)</span>
p3 <- plot_base_2 +
 coord_polar(theta = <span class="hljs-string">"y"</span>) +
 ggtitle(<span class="hljs-string">"theta = "y""</span>)

gridExtra::grid.arrange(p2, p3, plot_base_2, top = <span class="hljs-string">"geom_bar & coord_polar"</span>, ncol = <span class="hljs-number">2</span>)
# Base plot <span class="hljs-number">3</span> (long format, <span class="hljs-built_in">mean</span> width/length of sepals/petals calculated)
plot_base_3 <- iris %>%
 dplyr::group_by(Species) %>%
 dplyr::summarise(Petal.Length = <span class="hljs-built_in">mean</span>(Petal.Length),
                  Sepal.Length = <span class="hljs-built_in">mean</span>(Sepal.Length),
                  Sepal.Width = <span class="hljs-built_in">mean</span>(Sepal.Width),
                  Petal.Width = <span class="hljs-built_in">mean</span>(Petal.Width)) %>%
 reshape2::melt() %>%
 ggplot() +
 geom_polygon(aes(group = Species, color = Species, <span class="hljs-symbol">y</span> = value, <span class="hljs-symbol">x</span> = variable),
 fill = NA) +
 scale_color_manual(values = c(<span class="hljs-string">"#693FE9"</span>, <span class="hljs-string">"#A089F8"</span>, <span class="hljs-string">"#4f5fb7"</span>)) +
 theme_minimal() +
 ggtitle(<span class="hljs-string">"base plot"</span>)

# Radar plot
# geom_polygon & coord_polar
p2 <- plot_base_3 +
 theme_minimal() +
 coord_polar() +
 ggtitle(<span class="hljs-string">"coord_polar"</span>)

gridExtra::grid.arrange(plot_base_3, p2, top = <span class="hljs-string">"geom_polygon & coord_polar"</span>, ncol = <span class="hljs-number">2</span>)

Referenzen

  • Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.
Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
17.4.2025
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
17.4.2025
Mehr erfahren
  • Coding
  • Python
  • R
R und Python: Mit Reticulate das Beste aus beiden Welten nutzen
Team statworx
17.4.2025
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
17.4.2025
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
17.4.2025
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
17.4.2025
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
17.4.2025
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
17.4.2025
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
17.4.2025
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
17.4.2025
Mehr erfahren
  • Recap
  • statworx
STATWORX on Tour: Year-End-Event in Belgien
Sebastian Heinz
17.4.2025
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
17.4.2025
Mehr erfahren
  • Coding
  • R
  • Tutorial
R Code in Sublime Text kompilieren
Team statworx
17.4.2025
Mehr erfahren
  • Coding
  • R
  • Tutorial
Gestalten Sie RStudio nach Ihren Wünschen – Denn Schönheit zählt
Team statworx
17.4.2025
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
17.4.2025
Mehr erfahren
  • Coding
  • R
Master R Shiny: Ein Trick zum Aufbau wartbarer und skalierbarer Ereignisketten
Team statworx
17.4.2025
Mehr erfahren
  • Coding
  • Python
  • Statistics & Methods
Ensemble-Methoden im maschinellen Lernen: Bagging & Subagging
Team statworx
15.4.2025
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
15.4.2025
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
15.4.2025
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15.4.2025
Mehr erfahren
  • Coding
  • Python
  • Statistics & Methods
Wie man Gradient Boosting um den Faktor Zwei beschleunigt
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
15.4.2025
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
14.4.2025
Mehr erfahren
  • Machine Learning
  • Python
  • R
XGBoost: Entscheidungsbaum vs. Lineares Modell
Fabian Müller
14.4.2025
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
14.4.2025
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
14.4.2025
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
14.4.2025
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
11.4.2025
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
8.4.2025
Mehr erfahren
  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
25.2.2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
15.1.2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15.1.2025
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
6.12.2024
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
6.12.2024
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
6.12.2024
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
6.12.2024
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
6.12.2024
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Anpassung der Zeit- und Datumsskalen in ggplot2
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Machine Learning
  • Python
Data Science in Python – Der Einstieg in Machine Learning mit Scikit-Learn
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Als Data Science Praktikant bei statworx
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
6.12.2024
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
6.12.2024
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
6.12.2024
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.