Back to all Blog Posts

Pitfall: Non-Linearity of Marginal Effects in Logistic Regression

  • Statistics & Methods
17. November 2017
·

Team statworx

In the previous post on logistic regression, it was shown that the absolute coefficients within logistic regression models are difficult to interpret meaningfully due to their reference units. Another challenge in interpreting logistic regression weights has not yet been explicitly addressed: The effect of increasing an independent variable by one unit on the expression of the dependent variable, known as the marginal effect, is always influenced by the specific values of the independent variable under consideration as well as all other independent variables in logistic regression.

Estimation by Indirect Means

This is because the probability of occurrence of a given category of a categorical dependent variable in logistic regression is estimated in a nonlinear manner, essentially through an intermediate step: In principle, in a first step, the expression of an unobservable variable, a so-called latent variable, is modeled using an ordinary linear model. This latent variable reflects the "propensity" for the occurrence of the category of the dependent variable under consideration. (The occurrence of the category of interest of the dependent variable is conventionally denoted as y = 1.)

$$y_{l} =beta_{ 0 }+beta_{ 1 }x_{ 1 } + ... + beta_{ n }x_{ n }$$

The logistic regression model assumes that the observed categorical variable takes on the respective value of interest when the latent variable exceeds an arbitrarily chosen threshold of 0. The modeled values of the latent variable and the associated regression weights of the independent variables from the linear model must be transformed in order to determine the probability of occurrence of the category of interest of the dependent variable. This transformation requires knowledge of the distribution of the estimation errors. Within the logistic regression model, it is assumed that the errors follow a logistic distribution. Since not only the functional form but also the exact distribution of the errors must be known, the non-estimable variance of the error distribution as well as its conditional expectation value are fixed at $sigma^{ 2 } =pi^{ 2 } / 3$ and $E(epsilon|x) = 0$. This results in the fundamental equation of the logistic model:

$$P(y = 1| x) = frac{ e^{beta_{ 0 }+beta_{ 1 }x_{1} + ... + beta_{ n }x_{ n }} }{ 1 + e^{beta_{ 0 }+beta_{ 1 }x_{ 1 } + ... + beta_{ n }x_{ n }} } = frac{e^ { x'beta } }{ 1 + e^{x'beta} } = frac{ e^{Logit} }{ 1 + e^{Logit} }$$

Due to this estimation method and transformation, logistic regression coefficients represent the linear relationship between the independent variables and the latent variable, or the logits, or logarithmized odds ratios, for the respective category of the dependent variable under consideration. However, the relationship between logits, odds ratios, and regression coefficients on the one hand and the probabilities of occurrence of the categories of the dependent variable on the other is not linear. This non-linearity is always evident in the equations of the logistic regression model. In particular, when examining the exponentiated logistic regression coefficients, the odds ratios, it becomes immediately clear that the regression weights are multiplicatively rather than additively linked in a linear fashion. Odds ratios indicate a factorial change in probability of occurrence, whose absolute magnitude naturally depends on the "baseline probability."

Basic equation of the logistic model:

$$P(y = 1| x) = frac{e^ { x'beta } }{ 1 + e^{x'beta} } = frac{ e^{Logit} }{ 1 + e^{Logit} }$$

...resolved according to the logit:

$$Logit = lnfrac{ P }{ 1- P } = beta_{ 0 }+beta_{ 1 }x_{ 1 } + ... + beta_{ n }x_{ n }$$

... and additionally de-logarithmised:

$$OR := e^{ Logit } = e^{ lnfrac{ P }{ 1- P } } = e^{ beta_{ 0 }+beta_{ 1 }x_{ 1 } + ... + beta_{ n }x_{ n } } = e^{beta_{ 0 }}times e^{beta_{ 1 }x_{ 1 }} times ... times e^{beta_{ n }x_{ n }}$$

An Intuitive Illustration

Why marginal effects of independent variables depend on the exact values of all independent characteristics can be intuitively understood as follows: An increase in the (latent) propensity for the occurrence of the considered category of the dependent variable by a certain amount has a negligible effect on the predicted (probability of) the actually observed category of the dependent variable when the propensity is already very high or very low—far above or below the threshold. However, if the (latent) propensity is close to the threshold, an increase in propensity by the same amount is much more likely to be decisive for the predicted (probability of) category of the dependent variable. The existing propensity for the occurrence of the considered category, in turn, depends on the exact values of all independent characteristics.

The non-linearity of the marginal effects of independent characteristics becomes particularly evident in graphical representations when the probability of occurrence is plotted against the values of an independent characteristic: The slope of the probability curve is not constant.

Solution: AME and MEM

There are various ways to address the non-linearity when interpreting logistic models. One approach is to calculate or plot (changes in) probabilities of occurrence for different combinations of values, both for the independent variable of interest and the remaining independent variables, allowing for direct contrasts. However, if marginal effects are to be expressed in a compact, summarizing metric, AMEs or MEMs can be computed. The average marginal effect (AME) represents the average effect of increasing the independent variable by one unit, averaged over all available observations. The marginal effect at the mean (MEM), on the other hand, evaluates the effect of increasing the independent variable by one unit at the mean value of all independent variables. However, it is important to note that AMEs do not adequately capture the substantively meaningful non-linearity of effects, and crucial information about the effects of the independent variables is simply disregarded.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Text Classification
Fabian Müller
17.4.2025
Read more
  • Coding
  • Python
Making Of: A Free API For COVID-19 Data
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • Python
  • R
R and Python: Using Reticulate to Get the Best of Both Worlds
Team statworx
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Getting Started With Flexdashboards in R
Thomas Alcock
17.4.2025
Read more
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Why Causality Matters
Team statworx
17.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Coordinate Systems in ggplot2: Easily Overlooked and Rather Underrated
Team statworx
17.4.2025
Read more
  • Data Engineering
  • R
  • Tutorial
How To Create REST APIs With R Plumber
Stephan Emmer
17.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 1
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
statworx 2019 – A Year in Review
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Wine, Castles & Hiking!
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
Off To New Adventures: STATWORX Office Soft Opening
Team statworx
17.4.2025
Read more
  • Recap
  • statworx
STATWORX on Tour: Year-End-Event in Belgium
Sebastian Heinz
17.4.2025
Read more
  • Recap
  • statworx
statworx summer barbecue 2019
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Compiling R Code in Sublime Text
Team statworx
17.4.2025
Read more
  • Coding
  • R
  • Tutorial
Make RStudio Look the Way You Want — Because Beauty Matters
Team statworx
17.4.2025
Read more
  • Recaps
  • statworx
2020 – A Year in Review for Me and GPT-3
Sebastian Heinz
17.4.2025
Read more
  • Coding
  • R
Master R shiny: One trick to build maintainable and scaleable event chains
Team statworx
17.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
Ensemble Methods in Machine Learning: Bagging & Subagging
Team statworx
15.4.2025
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
15.4.2025
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
15.4.2025
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15.4.2025
Read more
  • Coding
  • Python
  • Statistics & Methods
How to Speed Up Gradient Boosting by a Factor of Two
Team statworx
15.4.2025
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
15.4.2025
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
15.4.2025
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
15.4.2025
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
14.4.2025
Read more
  • Machine Learning
  • Python
  • R
XGBoost Tree vs. Linear
Fabian Müller
14.4.2025
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
14.4.2025
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
14.4.2025
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
14.4.2025
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
11.4.2025
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
8.4.2025
Read more
  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
25.2.2025
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
15.1.2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15.1.2025
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
6.12.2024
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
6.12.2024
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
6.12.2024
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
6.12.2024
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
6.12.2024
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
6.12.2024
Read more
  • Coding
  • Data Engineering
Automated Creation of Docker Containers
Stephan Emmer
6.12.2024
Read more
  • Coding
  • Data Visualization
  • R
Customizing Time and Date Scales in ggplot2
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Machine Learning
  • Python
Data Science in Python - Getting started with Machine Learning with Scikit-Learn
Team statworx
6.12.2024
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
6.12.2024
Read more
  • Recap
  • statworx
As a Data Science Intern at statworx
Team statworx
6.12.2024
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
6.12.2024
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
6.12.2024
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
6.12.2024
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
6.12.2024
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
6.12.2024
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
6.12.2024
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
6.12.2024
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
6.12.2024
Read more
This is some text inside of a div block.
This is some text inside of a div block.