Zurück zu allen Blogbeiträgen

Wie Du ein R-Skript in Docker ausführst

  • Coding
  • Data Engineering
  • R
22. Februar 2019
·

Team statworx

Seit der Veröffentlichung im Jahr 2014 hat sich Docker zu einem unverzichtbaren Werkzeug für die Bereitstellung von Anwendungen entwickelt. Bei STATWORX ist R eines unserer täglichen Werkzeuge, weshalb viele von uns begeistert sind von RStudio's Rocker Projekt, das die Containerisierung von R-Code einfacher macht denn je.Containerisierung ist in vielen verschiedenen Situationen nützlich. Die Technologie ist äußerst hilfreich beim Einsatz von R-Code in einer Cloud-Computing-Umgebung, in welcher der gecodete Arbeitsablauf in regelmäßigen Abständen ausgeführt werden soll. Docker ist für diese Aufgabe aus zwei Gründen perfekt geeignet: Container können automatisiert in gewünschten Intervallen gestartet werden und aufgrund ihrer statischen Natur ist immer klar, welches Verhalten und welchen Output du von einem Docker-Container zu erwarten hast. Wenn du also vor der Aufgabe stehst, ein Machine-Learning-Modell für regelmäßige Prognosen einzusetzen, dann lohnt es sich dies mit Docker tun. Dieser Blogbeitrag führt dich Schritt für Schritt durch den gesamten Prozess, wie du dein R-Skript in einem Docker-Container zum Laufen bringst. Der Einfachheit halber werden wir mit einem lokalen Datensatz arbeiten.Zu Beginn möchte ich betonen, dass dieser Blogbeitrag kein allgemeines Docker-Tutorial ist. Wenn du dir nicht sicher bist was mit Images und Containern gemeint ist, dann empfehle ich dir, zunächst einen Blick auf das Docker Curriculum zu werfen. Solltest du daran interessiert sein, eine RStudio-Sitzung in einem Docker-Container laufen zu lassen, empfehle ich dir stattdessen dem OpenSciLabs Docker Tutorial einen Besuch abzustatten.In diesem Blogbeitrag geht es konkret um die Containerisierung eines R-Skripts, damit es schließlich bei jedem Start des Containers automatisch ausgeführt wird, ohne dass der Benutzer eingreifen muss – damit entfällt die Notwendigkeit des RStudio-IDE. Ich werde nur kurz auf die im Dockerfile und in der Kommandozeile verwendete Syntax eingehen, so dass du dich am besten mit den Grundlagen von Docker bereits vor dem Weiterlesen vertraut machst.

Was wir brauchen:

Für diesen gesamten Workflow benötigen wir folgendes:

  • ein R-Skript, das wir in ein Docker-Image einbauen
  • ein Base-Image, auf dem wir unser eigenes Image aufbauen
  • ein Dockerfile, mit der wir unser neues Image definieren

Du kannst alle Dateien und die verwendete Ordnerstruktur aus dem STATWORX GitHub Repository klonen.

Das R-Skript

Wir arbeiten mit einem sehr einfachen R-Skript, das einen Datensatz importiert, als Dataframe manipuliert, ein Diagramm auf der Grundlage der manipulierten Daten erstellt und zum Schluss sowohl das Diagramm als auch die darauf basierenden Daten exportiert. Der für dieses Beispiel verwendete Datensatz ist US 500 Records, der von Brian Dunning zur Verfügung gestellt wird. Wenn du dem Beispiel folgen möchtest, empfehle ich dir, diesen Datensatz in den Ordner 01_data zu kopieren.

library(readr)
library(dplyr)
library(ggplot2)
library(forcats)

# import dataframe
df <- read_csv("01_data/us-500.csv")

# manipulate data
plot_data <- df %>%
  group_by(state) %>%
  count()

# save manipulated data to output folder
write_csv(plot_data, "03_output/plot_data.csv")

# create plot based on manipulated data
plot <- plot_data %>% 
  ggplot()+
  geom_col(aes(fct_reorder(state, n), 
               n, 
               fill = n))+
  coord_flip()+
  labs(
    title = "Number of people by state",
    subtitle = "From US-500 dataset",
    x = "State",
    y = "Number of people"
  )+ 
  theme_bw()

# save plot to output folder
ggsave("03_output/myplot.png", width = 10, height = 8, dpi = 100)

Damit wird ein einfaches Balkendiagramm auf der Grundlage des Datensatzes erstellt:

Wir verwenden dieses Skript, weil wir nicht nur R-Code innerhalb eines Docker-Containers ausführen, sondern diesen R-Code auf Daten von außerhalb unseres Containers anwenden und die Ergebnisse anschließend speichern wollen.

Das Base-Image

Die DockerHub-Seite des Rocker-Projekts listet alle verfügbaren Rocker-Repositories auf. Da wir in unserem Skript Tidyverse-Pakete verwenden, ist das rocker/tidyverse-Image eine naheliegende Wahl. Das Problem mit diesem Repository ist, dass es auch RStudio selbst enthält, was wir für dieses spezifische Projekt nicht benötigen. Das bedeutet, dass wir stattdessen mit dem r-base Repository arbeiten und unser eigenes Tidyverse-fähiges Image erstellen. Wir können das rocker/r-base-Image von DockerHub nutzen, indem wir den folgenden Befehl im Terminal ausführen:

docker pull rocker/r-base

Dadurch wird das Base-R-Image aus dem Rocker DockerHub-Repository lokal gespeichert ("gepullt"). Wir können einen auf diesem Image basierenden Container starten, indem wir im Terminal folgenden Bashcode ausführen:

docker run -it --rm rocker/r-base

Herzlichen Glückwunsch, du führst jetzt R innerhalb eines Docker-Containers aus! Das Terminal wurde in eine R-Konsole verwandelt, mit der wir dank des Arguments -it interagieren können. Das Argument --rm sorgt dafür, dass der Container automatisch gelöscht wird, sobald wir ihn stoppen. Es steht dir frei, mit deiner containerisierten R-Sitzung zu experimentieren (die du mit der Funktion q() in der R-Konsole wieder beenden kannst). Du kannst zum Beispiel damit beginnen, die Pakete, die du für deinen Arbeitsablauf benötigst, mit install.packages() zu installieren, aber das ist eine mühsame und zeitraubende Herangehensweise. Besser ist es, die gewünschten Pakete bereits in das Image einzubauen, damit die benötigten Pakete nicht nach jedem Containerstart erneut manuell installiert werden müssen. Dazu benötigen wir ein Dockerfile.

Das Dockerfile

Mit einem Dockerfile teilen wir Docker mit, wie unser gewünschtes Image erstellt werden soll. Ein Dockerfile ist eine Textdatei, die "Dockerfile.txt" heißen muss und standardmäßig im Stammverzeichnis des "Build-Kontextes" liegt (in unserem Fall wäre das der Ordner "R-Script in Docker").

Zunächst legen wir ein bestehendes Docker-Image fest, basierend auf dem wir unser neues Image erstellen möchten. Anschließend verfassen wir eine Liste von Anweisungen, die unser Image so definieren, dass die Ausführung von Containern reibungslos und effizient verläuft. In unserem Fall möchte ich unser neues Image auf dem zuvor besprochenen rocker/r-base-Image aufbauen.  Ebenfalls möchte ich auch die lokale Ordnerstruktur replizieren, also erstelle ich die gewünschten Verzeichnisse direkt mit dem Dockerfile. Danach werden alle Dateien, auf die das Image Zugriff haben soll, in diese Verzeichnisse kopiert – so wird das R-Skript in das Docker-Image eingebaut.  Auf diese Weise können wir auch die manuelle Installation von Paketen nach dem Starten eines Containers umgehen, da wir ein zweites R-Skript vorbereiten können, das sich um die Paketinstallation kümmert. Es reicht nicht aus, das R-Skript einfach zu kopieren, wir müssen Docker auch anweisen, es beim Erstellen des Images automatisch auszuführen. Und das ist unser erstes Dockerfile:

# Base image https://hub.docker.com/u/rocker/
FROM rocker/r-base:latest

## create directories
RUN mkdir -p /01_data
RUN mkdir -p /02_code
RUN mkdir -p /03_output

## copy files
COPY /02_code/install_packages.R /02_code/install_packages.R
COPY /02_code/myScript.R /02_code/myScript.R

## install R-packages
RUN Rscript /02_code/install_packages.R

Vergiss nicht, dein entsprechendes install_packages.R-Skript vorzubereiten und zu speichern. Dazu gibst du im Skript an, welche R-Pakete in deinem Image vorinstalliert werden sollen. In unserem Fall sieht die Datei folgendermaßen aus:

install.packages("readr")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("forcats")

Erstellen und Ausführen des Images

Nun haben wir alle benötigten Komponenten für unser neues Docker-Image vorbereitet. Verwende das Terminal, um zu dem Ordner zu navigieren, in dem sich dein Dockerfile befindet und erstelle das Image mit:

docker build -t myname/myimage .

Der Prozess wird aufgrund der Paketinstallation einen Moment dauern. Sobald er abgeschlossen ist, kannst du das neue Image testen, indem du einen Container startest mit:

docker run -it --rm -v ~/"R-Script in Docker"/01_data:/01_data -v ~/"R-Script in Docker"/03_output:/03_output myname/myimage

Die Verwendung der -v-Argumente teilt Docker mit, welche lokalen Ordner den erstellten Ordnern innerhalb des Containers zugeordnet werden sollen. Dies ist wichtig, da wir so sowohl Zugriff auf unseren Datensatz von innerhalb des Containers erhalten, als auch den erstellen Output des Workflows lokal abspeichern können. Dadurch muss der Datensatz nicht in das Image eingebaut werden und wenn das Image gestoppt wird, gehen keine Outputs verloren.

Dieser Container kann nun mit dem Datensatz im Ordner 01_data interagieren und hat eine Kopie unseres Workflow-Skripts in seinem eigenen Ordner 02_code. Wenn Sie R anweisen, source("02_code/myScript.R") auszuführen, wird das Skript ausgeführt und der Output im Ordner 03_output gespeichert, von wo aus er auch in den lokalen Ordner 03_output kopiert wird.

Verbessern was wir haben

Nachdem wir nun getestet und bestätigt haben, dass unser R-Skript im Container wie erwartet läuft, fehlen nur noch ein paar wenige Dinge.

  1. Wir wollen das Skript nicht manuell aus dem Container heraus aufrufen, sondern es automatisch ausführen lassen, sobald der Container gestartet wird.

Dies können wir ganz einfach erreichen, indem wir den folgenden Befehl an das Ende unserer Dockerdatei anhängen:

## run the script
CMD Rscript /02_code/myScript.R

Das verweist auf den Speicherort unseres Skripts in der Ordnerstruktur des Containers, markiert es als R-Code und weist Docker dann an, beim Starten des Containers das Skript gleich auszuführen. Änderungen am Dockerfile bedeuten natürlich, dass wir unser Image neu erstellen müssen, und das wiederum bedeutet, dass der langsame Prozess der Paketinstallationen wiederholt werden muss. Das ist mühsam, vor allem wenn die Wahrscheinlichkeit besteht, dass es im Laufe der Zeit weitere Überarbeitungen der einzelnen Komponenten unseres Images geben wird. Deshalb schlage ich folgendes vor:

  1. Erstelle ein Docker-Zwischen-Image, auf dem alle wichtigen Pakete und Abhängigkeiten installiert sind. Auf diesem Zwischen-Image als Basis bauen wir dann unser gewünschtes, finales Image auf.

Auf diese Weise wird die Paketinstallation vom eigentlichen Image entkoppelt, so dass unser finales Image innerhalb von Sekunden neu gebaut werden kann. Dies ermöglicht es uns, frei mit dem Code zu experimentieren, ohne dass wir uns immer wieder mit der Installation von Paketen durch Docker beschäftigen müssen.

Erstellen eines Zwischen-Images

Das Dockerfile für unser Zwischen-Image sieht unserem vorherigen Beispiel sehr ähnlich. Da ich mich entschieden habe, das install_packages()-Skript zu modifizieren, um das gesamte tidyverse für die zukünftige Verwendung einzuschließen, müssen auch einige Debian-Pakete installiert werden, die das tidyverse benötigt. Nicht alle davon sind absolut notwendig, aber alle sind auf die eine oder andere Weise nützlich.

# Base image https://hub.docker.com/u/rocker/
FROM rocker/r-base:latest

# system libraries of general use
## install debian packages
RUN apt-get update -qq && apt-get -y --no-install-recommends install \
    libxml2-dev \
    libcairo2-dev \
    libsqlite3-dev \
    libmariadbd-dev \
    libpq-dev \
    libssh2-1-dev \
    unixodbc-dev \
    libcurl4-openssl-dev \
    libssl-dev

## update system libraries
RUN apt-get update && \
    apt-get upgrade -y && \
    apt-get clean

## create directories
RUN mkdir -p /02_code

## copy files
COPY /02_code/install_packages.R /02_code/install_packages.R

## install R-packages
RUN Rscript /02_code/install_packages.R

Ich baue das Image, indem ich im Terminal zu dem Ordner, in dem sich mein Dockerfile befindet, navigiere und den Befehl docker build erneut ausführe:

docker build -t oliverstatworx/base-r-tidyverse .

Ich habe dieses Image auch auf meinen DockerHub gepusht. So kannst du, wenn du jemals ein Base-R-Image mit vorinstalliertem tidyverse benötigst, es einfach auf meinem Image aufbauen, ohne dieses selbst erstellen zu müssen.

Nun, da das Zwischen-Image erstellt wurde, können wir unser ursprüngliches Dockerfile so ändern, dass es anstelle von rocker/r-base darauf aufbaut. Da sich unser Zwischen-Image bereits um die Paketinstallation kümmert kann dieser Abschnitt entfernt werden. Wir fügen auch die letzte Zeile hinzu, die unser Skript automatisch ausführt, sobald der Container gestartet wird. Unser endgültiges Dockerfile sollte in etwa so aussehen:

# Base image https://hub.docker.com/u/oliverstatworx/
FROM oliverstatworx/base-r-tidyverse:latest

## create directories
RUN mkdir -p /01_data
RUN mkdir -p /02_code
RUN mkdir -p /03_output

## copy files
COPY /02_code/myScript.R /02_code/myScript.R

## run the script
CMD Rscript /02_code/myScript.R

Der letzte Schliff

Da wir unser Image auf einem Zwischen-Image mit all unseren benötigten Paketen aufgebaut haben, können wir nun beliebig Teile des Dockerfiles ohne großen Zeitaufwand verändern. Beispielsweise kann es sinnvoll sein, das R-Skript so zu gestalten, dass Warnungen und Meldungen, die nicht mehr von Interesse sind (da das Image bereits getestet wurde und alles wie erwartet funktioniert) unterdrückt werden. Des weiteren können Meldungen hinzufügt werden, die dem Benutzenden mitteilen, welcher Teil des Skripts gerade von dem laufenden Container ausgeführt wird.

suppressPackageStartupMessages(library(readr))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(forcats))

options(scipen = 999,
        readr.num_columns = 0)

print("Starting Workflow")

# import dataframe
print("Importing Dataframe")
df <- read_csv("01_data/us-500.csv")

# manipulate data
print("Manipulating Data")
plot_data <- df %>%
  group_by(state) %>%
  count()

# save manipulated data to output folder
print("Writing manipulated Data to .csv")
write_csv(plot_data, "03_output/plot_data.csv")

# create plot based on manipulated data
print("Creating Plot")
plot <- plot_data %>% 
  ggplot()+
  geom_col(aes(fct_reorder(state, n), 
               n, 
               fill = n))+
  coord_flip()+
  labs(
    title = "Number of people by state",
    subtitle = "From US-500 dataset",
    x = "State",
    y = "Number of people"
  )+ 
  theme_bw()

# save plot to output folder
print("Saving Plot")
ggsave("03_output/myplot.png", width = 10, height = 8, dpi = 100)
print("Worflow Finished")

Nachdem wir mit dem Terminal zu dem Ordner navigieren, in dem sich unser Dockerfile befindet, bauen wir das Image noch einmal neu: docker build -t myname/myimage . Erneut starten wir einen Container auf Basis unseres Images und weisen die Ordner 01_data und 03_output den lokalen Verzeichnissen zu, so dass die Daten importiert und die erstellten Outputs lokal gespeichert werden:

docker run -it --rm -v ~/"R-Script in Docker"/01_data:/01_data -v ~/"R-Script in Docker"/03_output:/03_output myname/myimage

‍Herzlichen Glückwunsch, du hast jetzt ein sauberes Docker-Image erstellt! Dieses führt beim Containerstart nicht nur automatisch dein R-Skript aus, sondern teilt dirauch über Konsolenmeldungen genau mit, welchen Teil des Codes gerade ausgeführt wird. Viel Spaß beim Dockern! Oliver Guggenbühl Oliver Guggenbühl Oliver Guggenbühl Oliver Guggenbühl Oliver Guggenbühl Oliver Guggenbühl

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
08. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
16. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
30. November 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
13. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
02. Februar 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.