Zurück zu allen Blogbeiträgen

Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert

  • Artificial Intelligence
  • Data Science
  • GenAI
06. November 2024
·

Tarik Ashry
Team Marketing

Stell dir vor, du könntest alltägliche Routineaufgaben automatisieren und gleichzeitig Raum für kreative und innovative Tätigkeiten schaffen. Genau das ermöglicht der neue KI-Chatbot hagebauGPT den Mitarbeitenden von hagebau – einem europaweiten Netzwerk von Groß- und Einzelhändlern im Bereich Baustoffe, Holz, Fliesen und Do-it-yourself.

Mit hagebauGPT können Mitarbeitende sicher und effizient auf Unternehmensdatenbanken und interne Wissensquellen zugreifen. Diese Technologie fördert nicht nur den sicheren Umgang mit generativer KI, sondern verbessert auch die Arbeitsprozesse im Unternehmen. Langfristig soll dies zu mehr Effizienz führen und die Mitarbeitenden in ihrem täglichen Arbeitsablauf unterstützen. Kurz gesagt: hagebauGPT zeigt eindrucksvoll, wie maßgeschneiderte KI-Lösungen echte Vorteile und eine neue Dimension der Arbeitswelt schaffen können.

Die Herausforderung

Als die neuen generativen KI-Tools wie ChatGPT, Midjourney und Co. veröffentlicht wurden, erkannte hagebau schnell das Potenzial dieser Technologien zur Unterstützung ihrer internen Prozesse. Doch mit begrenzten IT-Ressourcen stand das Unternehmen vor der Herausforderung, diese innovativen Lösungen effektiv zu implementieren.

Mit statworx als strategischem Partner entschied sich hagebau für die Entwicklung eines eigenen, datensicheren Chatbots – hagebauGPT. Dieser Chatbot basiert auf der CustomGPT-Plattform von statworx, die speziell auf die Bedürfnisse des Unternehmens zugeschnitten wurde. Neben der sicheren Integration in die hagebau-Cloud bietet CustomGPT die Möglichkeit, branchenspezifische Funktionalitäten und eine individuelle Benutzeroberfläche zu integrieren, die mit den Markenrichtlinien des Unternehmens übereinstimmt.

Die Lösung

hagebauGPT nutzt Retrieval-Augmented Generation (RAG), um generative KI-Modelle mit spezifischem Wissen aus externen Datenquellen zu erweitern. Der Prozess besteht aus drei Schritten: Zuerst wird relevantes Wissen (Retrieval) aus den verfügbaren Daten gefunden. Dann wird eine Instruktion (Augment) erstellt, die das Sprachmodell nutzt, um eine präzise Antwort zu generieren (Generation). RAG ist besonders nützlich für die Beantwortung spezifischer Fragen, da es gezielt auf relevante Teile eines Datensatzes zugreift und so das Risiko von Fehlern reduziert. Die semantische Suche spielt dabei eine entscheidende Rolle, indem sie nicht nur nach Schlüsselwörtern, sondern auch nach Bedeutungen sucht. Dies ermöglicht es, relevante Informationen aus verschiedenen Datenquellen effizient zu finden.

Ein typischer Anwendungsfall von RAG ist der Einsatz in FAQ-Bots, die strukturierte FAQ-Datenbanken nutzen, um auf Benutzeranfragen zu antworten. Bei unstrukturierten Daten, wie technischen Handbüchern oder Marketingmaterialien, sind erweiterte Strategien notwendig, um diese in durchsuchbare Formate umzuwandeln. Hier RAG kann durch die Kombination von semantischer Vektorsuche und Fuzzy-Keyword-Suche weiter optimiert werden. Diese hybride Suchmethode sorgt dafür, dass sowohl genaue als auch kontextuell relevante Informationen effizient identifiziert werden.

Das Ergebnis

Der Chatbot bietet eine Vielzahl von Funktionen, darunter die Verarbeitung von Spracheingaben und die Interaktion mit internen Handbüchern. Nutzer:innen können zudem eigene Dokumente hochladen und bearbeiten. Dank RAG integriert hagebauGPT Unternehmensdaten und bietet zudem Kontrolle über Datensicherheit und Datenschutz, weil alle Daten innerhalb der EU bleiben. Diese Funktionalitäten fördern nicht nur die Effizienz, sondern auch die Kreativität der Mitarbeiter:innen, indem sie neue Wege der Interaktion und Problemlösung ermöglichen.

Nach einer erfolgreichen Pilotphase wurde hagebauGPT im Mai 2024 für alle Mitarbeiter:innen zugänglich gemacht. Die Resonanz war überwältigend positiv: Viele Mitarbeiter:innen nutzen den Chatbot aktiv und bringen neue Ideen für weitere Anwendungsfälle ein. Das zeigt: Der Weg von hagebau mit hagebauGPT ist ein Beispiel dafür, wie Unternehmen durch gezielte Investitionen in KI-Technologie langfristige Vorteile erzielen können. Das Unternehmen plant, die Funktionalitäten des Chatbots weiter auszubauen und dabei insbesondere die Effizienzoptimierung im Fokus zu behalten. Durch die Integration in bestehende Geschäftsanwendungen und die kontinuierliche Einbindung von Mitarbeiterfeedback wird die Plattform weiter verbessert und neue, innovative Einsatzmöglichkeiten erschlossen.

Fazit

Die Zusammenarbeit zwischen hagebau und statworx zeigt eindrucksvoll, wie KI-gestützte Technologien nicht nur die Effizienz steigern, sondern auch eine Plattform für kreative Lösungen bieten können. Unternehmen, die ähnliche Wege beschreiten möchten, können daraus konkrete Best Practices ableiten.

CustomGPT eröffnet Unternehmen die Chance, ihre spezifischen Geschäftsanforderungen zu erfüllen und gleichzeitig Datenschutz und Sicherheit zu gewährleisten. In unserer Case Study mit hagebau kannst du im Detail nachlesen, wie die Implementierung einer CustomGPT-Lösungen auch in deinem Unternehmen ablaufen könnte.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Coding
  • Python
  • Statistics & Methods
Ensemble-Methoden im maschinellen Lernen: Bagging & Subagging
Team statworx
15.4.2025
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
15.4.2025
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
15.4.2025
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15.4.2025
Mehr erfahren
  • Coding
  • Python
  • Statistics & Methods
Wie man Gradient Boosting um den Faktor Zwei beschleunigt
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
15.4.2025
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
14.4.2025
Mehr erfahren
  • Machine Learning
  • Python
  • R
XGBoost: Entscheidungsbaum vs. Lineares Modell
Fabian Müller
14.4.2025
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
14.4.2025
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
14.4.2025
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
14.4.2025
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
11.4.2025
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Diagramme mit ggplot und gganimate
Team statworx
8.4.2025
Mehr erfahren
  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
25.2.2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15.1.2025
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Die Zukunft des Customer Service: Generative KI als Erfolgsfaktor
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
6.12.2024
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
6.12.2024
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
6.12.2024
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
6.12.2024
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
6.12.2024
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Anpassung der Zeit- und Datumsskalen in ggplot2
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Machine Learning
  • Python
Data Science in Python – Der Einstieg in Machine Learning mit Scikit-Learn
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Als Data Science Praktikant bei statworx
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
6.12.2024
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
6.12.2024
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
6.12.2024
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
6.12.2024
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
6.12.2024
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Tutorial
Eine Einführung in Dataiku DSS
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Visualization
  • Python
Das häufigste Problem mit Plotly Histograms und wie man es löst
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Engineering
  • R
Wie Du ein R-Skript in Docker ausführst
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Data Visualization
  • Python
Data Science in Python – Matplotlib – Teil 4
Team statworx
6.12.2024
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.