Zurück zu allen Blogbeiträgen

Wie du dein Data Science Projekt fit für die Cloud machst

  • Cloud Technology
  • Data Engineering
  • Data Science
14. September 2022
·

Alexander Broska
Team AI Development

Schaffe Mehrwert für Deine Data Science Projekte

Data Science und datengetriebene Entscheidungen sind für viele Unternehmen zu einem zentralen Bestandteil ihres Tagesgeschäfts geworden, der in den kommenden Jahren nur noch an Wichtigkeit zunehmen wird. Bis Ende 2022 werden viele Unternehmen eine Cloud-Strategie eingeführt haben:

"70 % der Unternehmen werden bis 2022 über eine formale Cloud-Strategie verfügen, und diejenigen, die diese nicht einführen, werden es schwer haben." - Gartner-Forschung

Dadurch, dass sich Cloud-Technologien zu einem Grundbaustein in allen Arten von Unternehmen entwickeln, werden sie auch immer leichter verfügbar. Dies senkt die Einstiegshürde für die Entwicklung Cloud-nativer Anwendungen.

In diesem Blogeintrag werden wir uns damit beschäftigen, wie und warum wir Data Science Projekte am besten in der Cloud durchführen. Ich gebe einen Überblick über die erforderlichen Schritte, um ein Data Science Projekt in die Cloud zu verlagern, und gebe einige Best Practices aus meiner eigenen Erfahrung weiter, um häufige Fallstricke zu vermeiden.

Ich erörtere keine spezifischen Lösungsmuster für einzelne Cloud-Anbieter, stelle keine Vergleiche auf und gehe auch nicht im Detail auf Best Practices für Machine Learning und DevOps ein.

Data Science Projekte profitieren von der Nutzung öffentlicher Cloud-Dienste

Ein gängiger Ansatz für Data Science Projekte besteht darin, zunächst lokal Daten zu bearbeiten und Modelle auf Snapshot-basierten Daten zu trainieren und auszuwerten. Dies hilft in einem frühen Stadium Schritt zu halten, solange noch unklar ist, ob Machine Learning das identifizierte Problem überhaupt lösen kann. Nach der Erstellung einer ersten Modellversion, die den Anforderungen des Unternehmens entspricht, soll das Modell eingesetzt werden und somit Mehrwert schaffen.

Zum Einsatz eines Modells in Produktion gibt es normalerweise zwei Möglichkeiten: 1) Einsatz des Modells in einer on-premises Infrastruktur oder 2) Einsatz des Modells in einer Cloud-Umgebung bei einem Cloud-Anbieter Deiner Wahl. Die lokale Bereitstellung des Modells on-premises mag zunächst verlockend klingen, und es gibt Fälle, in denen dies eine umsetzbare Option ist. Allerdings können die Kosten für den Aufbau und die Wartung einer Data Science-spezifischen Infrastruktur recht hoch sein. Dies resultiert aus den unterschiedlichen Anforderungen, die von spezifischer Hardware über die Bewältigung von Spitzenbelastung während Trainingsphasen bis hin zu zusätzlichen, voneinander abhängigen Softwarekomponenten reichen.

Verschiedene Cloud-Konfigurationen bieten unterschiedliche Freiheitsgrade

Bei der Nutzung der Cloud wird zwischen «Infrastructure as a Service» (IaaS), «Container as a Service» (CaaS), «Platform as a Service» (PaaS) und «Software as a Service» (SaaS) unterschieden, wobei man in der Regel Flexibilität gegen Wartungsfreundlichkeit tauscht. Die folgende Abbildung veranschaulicht die Unterschiedlichen Abdeckungen auf den einzelnen Serviceebenen.

  • «On-Premises» musst Du dich um alles selbst kümmern: Bestellung und Einrichtung der erforderlichen Hardware, Einrichtung Deiner Datenpipeline und Entwicklung, Ausführung und Überwachung Deiner Anwendungen.
  • Bei «Infrastructure as a Service» kümmert sich der Anbieter um die Hardwarekomponenten und liefert eine virtuelle Maschine mit einer festen Version eines Betriebssystems (OS).
  • Bei «Containers as a Service» bietet der Anbieter eine Container-Plattform und eine Orchestrierungslösung an. Du kannst Container-Images aus einer öffentlichen Registry verwenden, diese anpassen oder eigene Container erstellen.
  • Bei «Platform as a Service»-Diensten musst Du in der Regel nur noch Deine Daten einbringen, um mit der Entwicklung Deiner Anwendung loszulegen. Falls es sich um eine serverlose Lösung handelt, sind auch keine Annahmen zur Servergröße nötig.
  • «Software as a Service»-Lösungen als höchstes Service-Level sind auf einen bestimmten Zweck zugeschnitten und beinhalten einen sehr geringen Aufwand für Einrichtung und Wartung. Dafür bieten sie aber nur eine stark begrenzte Flexibilität, denn neue Funktionen müssen in der Regel beim Anbieter angefordert werden.

Öffentliche Cloud-Dienste sind bereits auf die Bedürfnisse von Data Science Projekten zugeschnitten

Zu den Vorteilen der Public-Cloud gehören Skalierbarkeit, Entkopplung von Ressourcen und Pay-as-you-go-Modelle. Diese Vorteile sind bereits ein Plus für Data Science Anwendungen, z. B. für die Skalierung von Ressourcen für den Trainingsprozess. Darüber hinaus haben alle drei großen Cloud-Anbieter einen Teil ihres Servicekatalogs auf Data Science Anwendungen zugeschnitten, jeder von ihnen mit seinen eigenen Stärken und Schwächen.

Dazu gehören nicht nur spezielle Hardware wie GPUs, sondern auch integrierte Lösungen für ML-Operationen wie automatisierte Bereitstellungen, Modellregistrierungen und die Überwachung von Modellleistung und Datendrift. Viele neue Funktionen werden ständig entwickelt und zur Verfügung gestellt. Um mit diesen Innovationen und Funktionen on-premises Schritt zu halten, musst Du eine beträchtliche Anzahl von Ressourcen aufwenden, ohne dass sich dies direkt auf Dein Geschäft auswirkt.

Wenn Du an einer ausführlichen Diskussion über die Bedeutung der Cloud für den Erfolg von KI-Projekten interessiert bist, dann schau Dir doch dieses White Paper auf dem statworx Content Hub an.

Die Durchführung Deines Projekts in der Cloud erfolgt in nur 5 einfachen Schritten

Wenn Du mit der Nutzung der Cloud für Data Science Projekte beginnen möchtest, musst Du im Vorfeld einige wichtige Entscheidungen treffen und entsprechende Schritte unternehmen. Wir werden uns jeden dieser Schritte genauer ansehen.

1.    Auswahl der Cloud-Serviceebene

Bei der Wahl der Serviceebene sind die gängigsten Muster für Data-Science-Anwendungen CaaS oder PaaS. Der Grund dafür ist, dass «Infrastructure as a Service» hohe Kosten verursachen kann, die aus der Wartung virtueller Maschinen oder dem Aufbau von Skalierbarkeit über VMs hinweg resultieren. SaaS-Dienste hingegen sind bereits auf ein bestimmtes Geschäftsproblem zugeschnitten und sind einfach in Betrieb zu nehmen, anstatt ein eigenes Modell und eine eigene Anwendung zu entwickeln.

CaaS bietet den Hauptvorteil, dass Container auf jeder Containerplattform eines beliebigen Anbieters bereitgestellt werden können. Und wenn die Anwendung nicht nur aus dem Machine Learning Modell besteht, sondern zusätzliche Mikrodienste oder Front-End-Komponenten benötigt, können diese alle mit CaaS gehostet werden. Der Nachteil ist, dass, ähnlich wie bei einer On-Premises-Einführung, Container-Images für MLops-Tools wie Model Registry, Pipelines und Modell-Performance-Monitoring nicht standardmäßig verfügbar sind und mit der Anwendung erstellt und integriert werden müssen. Je größer die Anzahl der verwendeten Tools und Bibliotheken ist, desto höher ist die Wahrscheinlichkeit, dass künftige Versionen irgendwann Inkompatibilitäten aufweisen oder sogar überhaupt nicht mehr zusammenpassen.

PaaS-Dienste wie Azure Machine Learning, Google Vertex AI oder Amazon SageMaker hingegen haben all diese Funktionalitäten bereits integriert. Der Nachteil dieser Dienste ist, dass sie alle mit komplexen Kostenstrukturen einhergehen und spezifisch für den jeweiligen Cloud-Anbieter sind. Je nach Projektanforderungen können sich die PaaS-Dienste in einigen speziellen Fällen als zu restriktiv erweisen.

Beim Vergleich von CaaS und PaaS geht es meist um den Kompromiss zwischen Flexibilität und einem höheren Grad an Anbieterbindung. Eine stärkere Bindung an den Anbieter ist mit einem Aufpreis verbunden, der für die enthaltenen Funktionen, die größere Kompatibilität und die höhere Entwicklungsgeschwindigkeit zu entrichten ist. Eine höhere Flexibilität wiederum geht mit einem höheren Integrations- und Wartungsaufwand einher.

2.    Daten in der Cloud verfügbar machen

In der Regel besteht der erste Schritt zur Bereitstellung Deiner Daten darin, einen Schnappschuss der Daten in einen Cloud-Objektspeicher hochzuladen. Diese sind gut mit anderen Diensten integriert und können später mit geringem Aufwand durch eine geeignetere Datenspeicherlösung ersetzt werden. Sobald die Ergebnisse des Machine Learning Modells aus geschäftlicher Sicht geeignet sind, sollten Data Engineers einen Prozess einrichten, um Deine Daten automatisch auf dem neuesten Stand zu halten.

3.    Aufbau einer Pipeline für die Vorverarbeitung

Ein entscheidender Schritt bei jedem Data Science Projekt ist der Aufbau einer robusten Pipeline für die Datenvorverarbeitung. Dadurch wird sichergestellt, dass Deine Daten sauber und bereit für die Modellierung sind, was Dir auf lange Sicht Zeit und Mühe erspart. Ein bewährtes Verfahren ist die Einrichtung einer CICD-Pipeline (Continuous Integration and Continuous Delivery), um die Bereitstellung und das Testen Deiner Vorverarbeitung zu automatisieren und sie in Deinen DevOps-Zyklus einzubinden. Die Cloud hilft Dir, Deine Pipelines automatisch zu skalieren, um jede für das Training Deines Modells benötigte Datenmenge zu bewältigen.

4.    Training und Evaluierung des Modells

In dieser Phase wird die Preprocessing-Pipeline durch Hinzufügen von Modellierungskomponenten erweitert. Dazu gehört auch die Abstimmung von Hyperparametern, die wiederum von Cloud-Diensten durch die Skalierung von Ressourcen und die Speicherung der Ergebnisse der einzelnen Trainingsexperimente zum leichteren Vergleich unterstützt wird. Alle Cloud-Anbieter bieten einen automatisierten Dienst für Machine Learning an. Dieser kann entweder genutzt werden, um schnell die erste Version eines Modells zu erstellen und die Leistung mit den Daten über mehrere Modelltypen hinweg zu vergleichen. Auf diese Weise kannst Du schnell beurteilen, ob die Daten und die Vorverarbeitung ausreichen, um das Geschäftsproblem zu lösen. Außerdem kann das Ergebnis als Benchmark für Data Scientists verwendet werden. Das beste Modell sollte in einer Modellregistrierung gespeichert werden, damit es einsatzbereit und transparent ist.

Falls ein Modell bereits lokal oder on-premises trainiert wurde, ist es möglich, das Training zu überspringen und das Modell einfach in die Modellregistrierung zu laden.

5.   Bereitstellung des Modells für die Business Unit

Der letzte und wahrscheinlich wichtigste Schritt ist die Bereitstellung des Modells für Deine Business Unit, damit diese einen Nutzen daraus ziehen kann. Alle Cloud-Anbieter bieten Lösungen an, um das Modell mit geringem Aufwand skalierbar bereitzustellen. Schließlich werden alle Teile, die in den früheren Schritten von der automatischen Bereitstellung der neuesten Daten über die Anwendung der Vorverarbeitung und die Einspeisung der Daten in das bereitgestellte Modell erstellt wurden, zusammengeführt.

Jetzt haben wir die einzelnen Schritte für das Onboarding Deines Data Science Projekts durchlaufen. Mit diesen 5 Schritten bist Du auf dem besten Weg, Deinen Data-Science-Workflow in die Cloud zu verlagern. Um einige der üblichen Fallstricke zu vermeiden, möchte ich hier einige Erkenntnisse aus meinen persönlichen Erfahrungen weitergeben, die sich positiv auf den Erfolg Deines Projekts auswirken können.

Erleichtere Dir den Umstieg auf die Cloud mit diesen nützlichen Tipps

Beginne frühzeitig mit der Nutzung der Cloud.

Wenn Du früh damit beginnst, kann sich Dein Team mit den Funktionen der Plattform vertraut machen. Auf diese Weise kannst Du die Möglichkeiten der Plattform optimal nutzen und potenzielle Probleme und umfangreiche Umstrukturierungen vermeiden.

Stelle sicher, dass Deine Daten zugänglich sind.

Dies mag selbstverständlich erscheinen, aber es ist wichtig, dass Deine Daten beim Wechsel in die Cloud leicht zugänglich sind. Dies gilt insbesondere dann, wenn Du Deine Daten lokal generierst und anschliessend in die Cloud übertragen musst.

Erwäge den Einsatz von serverlosem Computing.

Serverless Computing ist eine großartige Option für Data Science Projekte, da es Dir ermöglicht, Deine Ressourcen nach Bedarf zu skalieren, ohne dass Du Server bereitstellen oder verwalten musst.

Vergiss nicht die Sicherheit.

Zwar bieten alle Cloud-Anbieter einige der modernsten IT-Sicherheitseinrichtungen an, doch einige davon sind bei der Konfiguration leicht zu übersehen und können Dein Projekt einem unnötigen Risiko aussetzen.

Überwache Deine Cloud-Kosten.

Bei der Optimierung von on-premises Lösungen geht es oft um die Spitzenauslastung von Ressourcen, da Hardware oder Lizenzen begrenzt sind. Mit Skalierbarkeit und Pay-as-you-go verschiebt sich dieses Paradigma stärker in Richtung Kostenoptimierung. Die Kostenoptimierung ist in der Regel nicht die erste Maßnahme, die man zu Beginn eines Projekts ergreift, aber wenn man die Kosten im Auge behält, können unangenehme Überraschungen vermeiden und die Cloud-Anwendung zu einem späteren Zeitpunkt noch kosteneffizienter gestalten werden.

Lass Deine Data Science Projekte mit der Cloud abheben

Wenn Du Dein nächstes Data Science Projekt in Angriff nimmst, ist die frühzeitige Nutzung der Cloud eine gute Option. Die Cloud ist skalierbar, flexibel und bietet eine Vielzahl von Diensten, mit denen Du das Beste aus Deinem Projekt herausholen kannst. Cloud-basierte Architekturen sind eine moderne Art der Anwendungsentwicklung, die in Zukunft noch mehr an Bedeutung gewinnen wird.

Wenn Du die vorgestellten Schritte befolgst, wirst Du auf diesem Weg unterstützt und kannst mit neusten Trends und Entwicklungen Schritt halten. Außerdem kannst Du mit meinen Tipps viele der üblichen Fallstricke vermeiden, die oft auf diesem Weg auftreten. Wenn Du also nach einer Möglichkeit suchst, das Beste aus Deinem Data Science Projekt herauszuholen, ist die Cloud definitiv eine Überlegung wert.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Coding
  • Python
  • Statistics & Methods
Ensemble-Methoden im maschinellen Lernen: Bagging & Subagging
Team statworx
15.4.2025
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
15.4.2025
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
15.4.2025
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15.4.2025
Mehr erfahren
  • Coding
  • Python
  • Statistics & Methods
Wie man Gradient Boosting um den Faktor Zwei beschleunigt
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
15.4.2025
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
15.4.2025
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
14.4.2025
Mehr erfahren
  • Machine Learning
  • Python
  • R
XGBoost: Entscheidungsbaum vs. Lineares Modell
Fabian Müller
14.4.2025
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
14.4.2025
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
14.4.2025
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
14.4.2025
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
11.4.2025
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Diagramme mit ggplot und gganimate
Team statworx
8.4.2025
Mehr erfahren
  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
25.2.2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
15.1.2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15.1.2025
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Die Zukunft des Customer Service: Generative KI als Erfolgsfaktor
Tarik Ashry
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
6.12.2024
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
6.12.2024
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
6.12.2024
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
6.12.2024
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
6.12.2024
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
6.12.2024
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Anpassung der Zeit- und Datumsskalen in ggplot2
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Machine Learning
  • Python
Data Science in Python – Der Einstieg in Machine Learning mit Scikit-Learn
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Recap
  • statworx
Als Data Science Praktikant bei statworx
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
6.12.2024
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
6.12.2024
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
6.12.2024
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
6.12.2024
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
6.12.2024
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
6.12.2024
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
6.12.2024
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
6.12.2024
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
6.12.2024
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
6.12.2024
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Tutorial
Eine Einführung in Dataiku DSS
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Visualization
  • Python
Das häufigste Problem mit Plotly Histograms und wie man es löst
Team statworx
6.12.2024
Mehr erfahren
  • Coding
  • Data Engineering
  • R
Wie Du ein R-Skript in Docker ausführst
Team statworx
6.12.2024
Mehr erfahren
  • Data Science
  • Data Visualization
  • Python
Data Science in Python – Matplotlib – Teil 4
Team statworx
6.12.2024
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.